
AD for an Array Language with Nested Parallelism

Robert Schenck, Ola Rønning, Troels Henriksen, and Cosmin E. Oancea

Department of Computer Science

University of Copenhagen

Overview

Automatic differentiation (AD) is a program transformation for differentiation.

f (x) f ′(x)AD

Considering AD for a functional, high-level, and nested-parallel array language.
All parallelism is made explicit via parallel combinators—map, reduce, scan, etc.

Overview

Automatic differentiation (AD) is a program transformation for differentiation.

f (x) f ′(x)AD

Considering AD for a functional, high-level, and nested-parallel array language.
All parallelism is made explicit via parallel combinators—map, reduce, scan, etc.

20
24

-0
6-

16

Overview

- AD is a program transformation which takes as input a program and computes its derivative.
For example, the program may compute f(x) and the AD transformation yields a new program
which computes f’(x).
- This talk is about AD in the context of pure, functional, high-level, and nested-parallel array
language.
- A defining feature in the language is that all parallelism is made explicit with parallel com-
binators. Things like map, reduce, scan and so forth.

High-level AD

Key idea #1: High-level AD

Parallel constructs are differentiated at a high-level.

Parallel combinators are differentiated with specialized rewrite rules.

map ==⇒
AD

reduce ◦ map, reduce ==⇒
AD

map ◦ scan

Differentiated programs benefit from entire optimization pipeline in the
compiler.
Differentiation occurs before parallelism is mapped to hardware.

High-level AD

Key idea #1: High-level AD

Parallel constructs are differentiated at a high-level.

Parallel combinators are differentiated with specialized rewrite rules.

map ==⇒
AD

reduce ◦ map, reduce ==⇒
AD

map ◦ scan

Differentiated programs benefit from entire optimization pipeline in the
compiler.
Differentiation occurs before parallelism is mapped to hardware.

20
24

-0
6-

16

High-level AD

- Specialized rewrite rules: can write the derivative for each parallel construct in terms of
parallel constructs themselves.
- Differentiation happens early in the compiler pipeline–differentiated prorams benefit from
the *entire* pipeline.
- Before parallelism is mapped: flexibility to aggresively optimize the original code and differ-
entiated code independently.
- Parallel structure of the differentiated code to differ from that of the original code.

The Tape

Variables of the original program appear in the differentiated program.
All intermediate variables in the original program must be accessible in the
differentiated program.
In classic AD, these variables are stored on a dynamically allocated tape.

f (x)

f ′(x)

AD
t1 = · · ·
t2 = sin(t1)

...

t1 = · · ·
t2 = sin(t1)

...
t1 = cos(t1) t2

...

t1
t2

tape

The Tape

Variables of the original program appear in the differentiated program.
All intermediate variables in the original program must be accessible in the
differentiated program.
In classic AD, these variables are stored on a dynamically allocated tape.

f (x)

f ′(x)

AD
t1 = · · ·
t2 = sin(t1)

...

t1 = · · ·
t2 = sin(t1)

...
t1 = cos(t1) t2

...

t1
t2

tape

20
24

-0
6-

16

The Tape

- Key challenge in AD: variables of the original program appear in the differentiated program.
- Need mechanism to make the original program available to the differentiated program.
- Data structure on which we store original program variables is called the tape.
- Tape must be dynamically allocated since the amount of storage cannot be statically deter-
mined due to control flow.

AD by Re-execution

In our nested-parallel context, the tape is complex/irregular and must be passed
across deeply nested scopes. Challenging to implement efficiently.

Key idea #2: Re-execution

Instead of storing intermediate variables, re-compute them by re-execution.
A classic space-time tradeoff.
Asymptotics-preserving: re-execution overhead is a constant for non-recursive
programs.
Pretty fast in practice!

AD by Re-execution

In our nested-parallel context, the tape is complex/irregular and must be passed
across deeply nested scopes. Challenging to implement efficiently.

Key idea #2: Re-execution

Instead of storing intermediate variables, re-compute them by re-execution.
A classic space-time tradeoff.
Asymptotics-preserving: re-execution overhead is a constant for non-recursive
programs.
Pretty fast in practice!

20
24

-0
6-

16

AD by Re-execution

- Challenge to implement efficiently, especially in regards to coalesced memory accesses.
- One of our motivations for this work was demonstrating that the simpler approach of recom-
putation is not only computationally valid, but can yield excellent performance.

Related Parallel AD Work

PyTorch, JAX, etc: Restricted flat-parallel DSLs; AD on fixed set of array primitives.
Enzyme: LLVM compiler plugin that does AD on a post-optimization, low-level
representation.
Dex: High-level AD that uses multiple tapes.

Related Parallel AD Work

PyTorch, JAX, etc: Restricted flat-parallel DSLs; AD on fixed set of array primitives.
Enzyme: LLVM compiler plugin that does AD on a post-optimization, low-level
representation.
Dex: High-level AD that uses multiple tapes.

20
24

-0
6-

16

Related Parallel AD Work

- To give some context to where our work lies in the parallel AD ecosystem, let’s look at some
contemporaries that support efficient parallel AD.
- There are restricted, flat-parallel DSLs that do AD on array primitives like PyTorch and JAX.
These languages, while often fast in some cases, are limited in what they can efficiently differ-
entiate.
- There’s also Enzyme, which, in contrast to us, differentiates on a post-optimization low-levle
representation.
- There’s Dex, which also takes a high-level approach to AD with a tape-based approach. As of
yet they haven’t published benchmarks.

A Very Short Introduction to AD

A Very Short Introduction to AD

20
24

-0
6-

16 A Very Short Introduction to AD

I’ll now give a quick intro to the basics of AD.

Introduction to AD

P(x0, x1) : P′(x0, x1) :
t0 = sin(x0) t0 = sin(x0)
t1 = x1 ∗ t0 =⇒ t1 = x1 ∗ t0
y = x0 + t1 y = x0 + t1
return y x0 = 1

t1 = 1
x1 = t0 ∗ t1
t0 = x1 ∗ t1
x0 += cos(x0) ∗ t0
return x0, x1

Adjoint of a variable

v ≡ ∂y
∂v

The sensitivity of the output y to v.

Goal: compute the adjoints of the
input variables.

Introduction to AD

P(x0, x1) : P′(x0, x1) :
t0 = sin(x0) t0 = sin(x0)
t1 = x1 ∗ t0 =⇒ t1 = x1 ∗ t0
y = x0 + t1 y = x0 + t1
return y x0 = 1

t1 = 1
x1 = t0 ∗ t1
t0 = x1 ∗ t1
x0 += cos(x0) ∗ t0
return x0, x1

Adjoint of a variable

v ≡ ∂y
∂v

The sensitivity of the output y to v.

Goal: compute the adjoints of the
input variables.

20
24

-0
6-

16 A Very Short Introduction to AD

Introduction to AD

- On the far left we have some program P, with inputs x 0 and x 1 and return y.
- Next to it is its derivative, P’, computed by AD. Notice that it has been augmented with a bunch
of variables with bars on top of them. These are called *adjoints*.
-The adjoint of a variable is the sensitivty of the output of the original program to that variable.
- Notice that P’ returns the adjoint of the inputs; that is the goal of AD. The adjoints of the
inputs are exactly the derivative of the program.

Introduction to AD

P′(x0, x1) :
t0 = sin(x0)
t1 = x1 ∗ t0
y = x0 + t1
x0 = 1
t1 = 1
x1 = t0 ∗ t1
t0 = x1 ∗ t1
x0 += cos(x0) ∗ t0
return x0, x1

Key points:
Adjoints depend on original program
variables, which must be computed
first.

Adjoints are computed in
reverse-program order.
Adjoints are computed via a rewrite
rule:

v = f (u,w) =⇒

v = f (u,w)
...

u +=
∂f (u,w)

∂u
v

w +=
∂f (u,w)

∂w
v

Introduction to AD

P′(x0, x1) :
t0 = sin(x0)
t1 = x1 ∗ t0
y = x0 + t1
x0 = 1
t1 = 1
x1 = t0 ∗ t1
t0 = x1 ∗ t1
x0 += cos(x0) ∗ t0
return x0, x1

Key points:
Adjoints depend on original program
variables, which must be computed
first.

Adjoints are computed in
reverse-program order.
Adjoints are computed via a rewrite
rule:

v = f (u,w) =⇒

v = f (u,w)
...

u +=
∂f (u,w)

∂u
v

w +=
∂f (u,w)

∂w
v

20
24

-0
6-

16 A Very Short Introduction to AD

Introduction to AD

- Also noticce that many adjoints depend on other adjoints. To compute the adjoints of the
inputs, we have to first compute the adjoints of any variables whih directly or indirectly depend
on the inputs as the inputs can affect the output through these variables.

Introduction to AD

P′(x0, x1) :
t0 = sin(x0)
t1 = x1 ∗ t0
y = x0 + t1
x0 = 1
t1 = 1
x1 = t0 ∗ t1
t0 = x1 ∗ t1
x0 += cos(x0) ∗ t0
return x0, x1

Key points:
Adjoints depend on original program
variables, which must be computed
first.
Adjoints are computed in
reverse-program order.

Adjoints are computed via a rewrite
rule:

v = f (u,w) =⇒

v = f (u,w)
...

u +=
∂f (u,w)

∂u
v

w +=
∂f (u,w)

∂w
v

Introduction to AD

P′(x0, x1) :
t0 = sin(x0)
t1 = x1 ∗ t0
y = x0 + t1
x0 = 1
t1 = 1
x1 = t0 ∗ t1
t0 = x1 ∗ t1
x0 += cos(x0) ∗ t0
return x0, x1

Key points:
Adjoints depend on original program
variables, which must be computed
first.
Adjoints are computed in
reverse-program order.

Adjoints are computed via a rewrite
rule:

v = f (u,w) =⇒

v = f (u,w)
...

u +=
∂f (u,w)

∂u
v

w +=
∂f (u,w)

∂w
v

20
24

-0
6-

16 A Very Short Introduction to AD

Introduction to AD

- Also noticce that many adjoints depend on other adjoints. To compute the adjoints of the
inputs, we have to first compute the adjoints of any variables whih directly or indirectly depend
on the inputs as the inputs can affect the output through these variables.

Introduction to AD

P′(x0, x1) :
t0 = sin(x0)
t1 = x1 ∗ t0
y = x0 + t1
x0 = 1
t1 = 1
x1 = t0 ∗ t1
t0 = x1 ∗ t1
x0 += cos(x0) ∗ t0
return x0, x1

Key points:
Adjoints depend on original program
variables, which must be computed
first.
Adjoints are computed in
reverse-program order.
Adjoints are computed via a rewrite
rule:

v = f (u,w) =⇒

v = f (u,w)
...

u +=
∂f (u,w)

∂u
v

w +=
∂f (u,w)

∂w
v

Introduction to AD

P′(x0, x1) :
t0 = sin(x0)
t1 = x1 ∗ t0
y = x0 + t1
x0 = 1
t1 = 1
x1 = t0 ∗ t1
t0 = x1 ∗ t1
x0 += cos(x0) ∗ t0
return x0, x1

Key points:
Adjoints depend on original program
variables, which must be computed
first.
Adjoints are computed in
reverse-program order.
Adjoints are computed via a rewrite
rule:

v = f (u,w) =⇒

v = f (u,w)
...

u +=
∂f (u,w)

∂u
v

w +=
∂f (u,w)

∂w
v

20
24

-0
6-

16 A Very Short Introduction to AD

Introduction to AD

- Also noticce that many adjoints depend on other adjoints. To compute the adjoints of the
inputs, we have to first compute the adjoints of any variables whih directly or indirectly depend
on the inputs as the inputs can affect the output through these variables.

AD Transformation

AD Transformation

20
24

-0
6-

16 AD Transformation

Let’s now move on to looking at the actual AD transformation in the language.

AD Transformation

Programs are built from bodies; i.e., a list of statements concluding in a result.

let x = a + b
let res = x * c
in res

stm
— stms
body

AD Transformation

Programs are built from bodies; i.e., a list of statements concluding in a result.

let x = a + b
let res = x * c
in res

stm
— stms
body

20
24

-0
6-

16 AD Transformation

AD Transformation

- We build our programs from *bodies*, which are a list of statements that conclude in a result.
- To differentiate, we first execute the statements of the original body, which we call the *for-
ward sweep*.
- Then, we compute the adjoint contributions, which we call the *reverse sweep*, using the AD
rewrite rule from before.
- Finally, we return the adjoints of free variables, since any local variables will be out of scope
once the body returns.

AD Transformation

Programs are built from bodies; i.e., a list of statements concluding in a result.

let x = a + b let x = a + b
let res = x * c let res = x * c
in res =⇒

stm
— stms
body

−−→
stms

To differentiate:
1. Execute the statements of the original body;

−−→
stms is the forward sweep.

AD Transformation

Programs are built from bodies; i.e., a list of statements concluding in a result.

let x = a + b let x = a + b
let res = x * c let res = x * c
in res =⇒

stm
— stms
body

−−→
stms

To differentiate:
1. Execute the statements of the original body;

−−→
stms is the forward sweep.20

24
-0

6-
16 AD Transformation

AD Transformation

- We build our programs from *bodies*, which are a list of statements that conclude in a result.
- To differentiate, we first re-execute the statements of the original body, which we call the
forward sweep.
- Then, we compute the adjoint contributions, which we call the *reverse sweep*, using the AD
rewrite rule from before.
- Finally, we return the adjoints of free variables, since any local variables will be out of scope
once the body returns.

AD Transformation

Programs are built from bodies; i.e., a list of statements concluding in a result.

let x = a + b let x = a + b
let res = x * c let res = x * c
in res =⇒ let x = c * res

let c += x* res
let a += x
let b += x

stm
— stms
body

−−→
stms

←−−
stms

←→
stms

To differentiate:
1. Execute the statements of the original body;

−−→
stms is the forward sweep.

2. Compute the adjoint contributions;
←−−
stms is the reverse sweep.

AD Transformation

Programs are built from bodies; i.e., a list of statements concluding in a result.

let x = a + b let x = a + b
let res = x * c let res = x * c
in res =⇒ let x = c * res

let c += x* res
let a += x
let b += x

stm
— stms
body

−−→
stms

←−−
stms

←→
stms

To differentiate:
1. Execute the statements of the original body;

−−→
stms is the forward sweep.

2. Compute the adjoint contributions;
←−−
stms is the reverse sweep.20

24
-0

6-
16 AD Transformation

AD Transformation

- We build our programs from *bodies*, which are a list of statements that conclude in a result.
- To differentiate, we first re-execute the statements of the original body, which we call the
forward sweep.
- Then, we compute the adjoint contributions, which we call the *reverse sweep*, using the AD
rewrite rule from before.
- Finally, we return the adjoints of free variables, since any local variables will be out of scope
once the body returns.

AD Transformation

Programs are built from bodies; i.e., a list of statements concluding in a result.

let x = a + b let x = a + b
let res = x * c let res = x * c
in res =⇒ let x = c * res

let c += x* res
let a += x
let b += x
in (a, b, c)

stm
— stms
body

−−→
stms

←−−
stms

←→
stms

fvsbody

To differentiate:
1. Execute the statements of the original body;

−−→
stms is the forward sweep.

2. Compute the adjoint contributions;
←−−
stms is the reverse sweep.

3. Return the adjoints of free variables.

AD Transformation

Programs are built from bodies; i.e., a list of statements concluding in a result.

let x = a + b let x = a + b
let res = x * c let res = x * c
in res =⇒ let x = c * res

let c += x* res
let a += x
let b += x
in (a, b, c)

stm
— stms
body

−−→
stms

←−−
stms

←→
stms

fvsbody

To differentiate:
1. Execute the statements of the original body;

−−→
stms is the forward sweep.

2. Compute the adjoint contributions;
←−−
stms is the reverse sweep.

3. Return the adjoints of free variables.20
24

-0
6-

16 AD Transformation

AD Transformation

- We build our programs from *bodies*, which are a list of statements that conclude in a result.
- To differentiate, we first re-execute the statements of the original body, which we call the
forward sweep.
- Then, we compute the adjoint contributions, which we call the *reverse sweep*, using the AD
rewrite rule from before.
- Finally, we return the adjoints of free variables, since any local variables will be out of scope
once the body returns.

AD by Re-Execution

let zs = map (λa bs→
let z = reduce (λx y →
let t = sin(x) stms0
let red res = t * y


stms1

in red res) 0 bs stms2
let map res = z * a
in map res) as bss

in zs

AD by Re-Execution

let zs = map (λa bs→
let z = reduce (λx y →
let t = sin(x) stms0
let red res = t * y


stms1

in red res) 0 bs stms2
let map res = z * a
in map res) as bss

in zs

20
24

-0
6-

16 AD Transformation

AD by Re-Execution

- Now let’s look at how our re-execution technique works in practice
- Here’s a sample program which contains three different color-coded scopes.
- On the right, we’ve represented the nested structure of this program as a series of indented
statements.
- Let’s now see how these statements are re-executed during differentiation.

AD by Re-Execution
−−−→
stms0−−−→
stms1−−−→
stms2

stms0
←−−−
stms0

stms1 =⇒

−−−→
stms1

stms2

−−−→
stms2←−−−

stms1−−−→
stms2←−−−
stms2

The amount of re-execution is proportional equal to the depth of the deepest
scope.

AD by Re-Execution
−−−→
stms0−−−→
stms1−−−→
stms2

stms0
←−−−
stms0

stms1 =⇒

−−−→
stms1

stms2

−−−→
stms2←−−−

stms1−−−→
stms2←−−−
stms2

The amount of re-execution is proportional equal to the depth of the deepest
scope.

20
24

-0
6-

16 AD Transformation

AD by Re-Execution

- First we differentiate the outermost scope. To do so, we re-execute the outermost scope
to bring into scope any intermediate variables in the outermost scope. This is shown by the
statements with the right arrow.
Then we compute the adjoints of the outermost scope in a reverse sweep, shown with the left
arrow.
- Next, to differentiate the middle scope, denoted in blue, we re-execute the middle scope and
then compute the adjoint updates.
- Finally, to differentiate the innermost scope, we re-execute only the innermost scope and then
do a final reverse sweep for the adjoint updates.
- Notice that the amout of re-execution is proportional to the depth of the deepest scope. So,
here, the deepest scope has depth 3 and we re-execute it 3 times.

AD by Re-Execution
−−−→
stms0−−−→
stms1−−−→
stms2

stms0
←−−−
stms0

stms1 =⇒ −−−→
stms1

stms2
−−−→
stms2←−−−

stms1

−−−→
stms2←−−−
stms2

The amount of re-execution is proportional equal to the depth of the deepest
scope.

AD by Re-Execution
−−−→
stms0−−−→
stms1−−−→
stms2

stms0
←−−−
stms0

stms1 =⇒ −−−→
stms1

stms2
−−−→
stms2←−−−

stms1

−−−→
stms2←−−−
stms2

The amount of re-execution is proportional equal to the depth of the deepest
scope.

20
24

-0
6-

16 AD Transformation

AD by Re-Execution

- First we differentiate the outermost scope. To do so, we re-execute the outermost scope
to bring into scope any intermediate variables in the outermost scope. This is shown by the
statements with the right arrow.
Then we compute the adjoints of the outermost scope in a reverse sweep, shown with the left
arrow.
- Next, to differentiate the middle scope, denoted in blue, we re-execute the middle scope and
then compute the adjoint updates.
- Finally, to differentiate the innermost scope, we re-execute only the innermost scope and then
do a final reverse sweep for the adjoint updates.
- Notice that the amout of re-execution is proportional to the depth of the deepest scope. So,
here, the deepest scope has depth 3 and we re-execute it 3 times.

AD by Re-Execution
−−−→
stms0−−−→
stms1−−−→
stms2

stms0
←−−−
stms0

stms1 =⇒ −−−→
stms1

stms2
−−−→
stms2←−−−

stms1−−−→
stms2←−−−
stms2

The amount of re-execution is proportional equal to the depth of the deepest
scope.

AD by Re-Execution
−−−→
stms0−−−→
stms1−−−→
stms2

stms0
←−−−
stms0

stms1 =⇒ −−−→
stms1

stms2
−−−→
stms2←−−−

stms1−−−→
stms2←−−−
stms2

The amount of re-execution is proportional equal to the depth of the deepest
scope.

20
24

-0
6-

16 AD Transformation

AD by Re-Execution

- First we differentiate the outermost scope. To do so, we re-execute the outermost scope
to bring into scope any intermediate variables in the outermost scope. This is shown by the
statements with the right arrow.
Then we compute the adjoints of the outermost scope in a reverse sweep, shown with the left
arrow.
- Next, to differentiate the middle scope, denoted in blue, we re-execute the middle scope and
then compute the adjoint updates.
- Finally, to differentiate the innermost scope, we re-execute only the innermost scope and then
do a final reverse sweep for the adjoint updates.
- Notice that the amout of re-execution is proportional to the depth of the deepest scope. So,
here, the deepest scope has depth 3 and we re-execute it 3 times.

Re-execution in Perfect Scope Nests
−−−→
stms0

−−−→
stms0−−−→

stms1
−−−→
stms1−−−→

stms2
−−−→
stms2

stms0
←−−−
stms0

←−−−
stms0

stms1 =⇒ −−−→
stms1

←−−−
stms1

stms2
−−−→
stms2

−−−→
stms2←−−−

stms1
←−−−
stms2−−−→

stms2←−−−
stms2

General case Perfect nest

In perfect scope nests, only the outermost and innermost scopes are re-executed.

Re-execution in Perfect Scope Nests
−−−→
stms0

−−−→
stms0−−−→

stms1
−−−→
stms1−−−→

stms2
−−−→
stms2

stms0
←−−−
stms0

←−−−
stms0

stms1 =⇒ −−−→
stms1

←−−−
stms1

stms2
−−−→
stms2

−−−→
stms2←−−−

stms1
←−−−
stms2−−−→

stms2←−−−
stms2

General case Perfect nest

In perfect scope nests, only the outermost and innermost scopes are re-executed.

20
24

-0
6-

16 AD Transformation

Re-execution in Perfect Scope Nests

- In perfect nests, which are nests of parallel or loop constructs without any intermediate state-
ments, re-execution isn’t necessary for intermediate constructs in the nest.
- This means that we can use compiler optimizations like loop distribution and interchange to
create perfect nests and exploit this fact.
- By applying these optimizations, we commonly expect the re-execution to only be executed
twice: once for the outermost scope and once for the innermost scope.
- Actually, the example from before is a perfect nest because there are no intermediate state-
ments between the map and reduce.

Differentiating Parallel Constructs

Differentiating Parallel Constructs

20
24

-0
6-

16 Differentiating Parallel Constructs

Let’s now look at how we differentiate the parallel constructs in the language.

Reduce

Reduce combines all elements of an array with a binary associative operator ⊙:

let y = reduce ⊙ e⊙ [a0, a1, . . . , an−1]

≡
let y = a0 ⊙ a1 ⊙ · · · ⊙ an−1

For each ai in the array, we can group the terms of the reduce as

a0 ⊙ · · · ⊙ ai−1︸ ︷︷ ︸
li

⊙ ai ⊙ ai+1 ⊙ · · · ⊙ an−1︸ ︷︷ ︸
ri

And then directly apply the AD rewrite rule

ai +=
∂(li ⊙ ai ⊙ ri)

∂ai
y

Reduce

Reduce combines all elements of an array with a binary associative operator ⊙:

let y = reduce ⊙ e⊙ [a0, a1, . . . , an−1]

≡
let y = a0 ⊙ a1 ⊙ · · · ⊙ an−1

For each ai in the array, we can group the terms of the reduce as

a0 ⊙ · · · ⊙ ai−1︸ ︷︷ ︸
li

⊙ ai ⊙ ai+1 ⊙ · · · ⊙ an−1︸ ︷︷ ︸
ri

And then directly apply the AD rewrite rule

ai +=
∂(li ⊙ ai ⊙ ri)

∂ai
y20

24
-0

6-
16 Differentiating Parallel Constructs

Reduce

- As you can see on the slide, reduce combines all elements of an array with some binary
associative operator.
- To differentiate reduce, we first group the terms of the reduce for each element a i into the
elements which precede it–l i–and the elements which come after it, r i.
- At this point, we can just directly apply the AD rewrite rule from the introduction and obtain
the adjust contributions for each a i. The question that remains, then, is how to compute l i
and r i *efficiently*.

Computing li and ri

For each i ∈ {0, . . . , n− 1}, need to compute li and ri

a0 ⊙ · · · ⊙ ai−1︸ ︷︷ ︸
li

⊙ ai ⊙ ai+1 ⊙ · · · ⊙ an−1︸ ︷︷ ︸
ri

For the lis, do a parallel scan

let ls = scan⊙ e⊙ [a0, a1, . . . , an−1] ≡ [e⊙︸︷︷︸
l0

, a0︸︷︷︸
l1

, a0 ⊙ a1︸ ︷︷ ︸
l2

, . . . , a0 ⊙ . . .⊙ an−2︸ ︷︷ ︸
ln−1

]

For the ris, the array must be reversed

let rs = reverse as ▷ scan (λx y → y ⊙ x) e⊙ [a0, a1, . . . , an−1] ▷ reverse

≡ [a0 ⊙ . . .⊙ an−2︸ ︷︷ ︸
r0

, . . . , an−2 ⊙ an−1︸ ︷︷ ︸
rn−3

, an−1︸︷︷︸
rn−2

, e⊙︸︷︷︸
rn−1

]

Computing li and ri

For each i ∈ {0, . . . , n− 1}, need to compute li and ri

a0 ⊙ · · · ⊙ ai−1︸ ︷︷ ︸
li

⊙ ai ⊙ ai+1 ⊙ · · · ⊙ an−1︸ ︷︷ ︸
ri

For the lis, do a parallel scan

let ls = scan⊙ e⊙ [a0, a1, . . . , an−1] ≡ [e⊙︸︷︷︸
l0

, a0︸︷︷︸
l1

, a0 ⊙ a1︸ ︷︷ ︸
l2

, . . . , a0 ⊙ . . .⊙ an−2︸ ︷︷ ︸
ln−1

]

For the ris, the array must be reversed

let rs = reverse as ▷ scan (λx y → y ⊙ x) e⊙ [a0, a1, . . . , an−1] ▷ reverse

≡ [a0 ⊙ . . .⊙ an−2︸ ︷︷ ︸
r0

, . . . , an−2 ⊙ an−1︸ ︷︷ ︸
rn−3

, an−1︸︷︷︸
rn−2

, e⊙︸︷︷︸
rn−1

]20
24

-0
6-

16 Differentiating Parallel Constructs

Computing li and ri

- So we need to compute l i and r i for *each* element in the array.
- For the l is, we can do this in a straightforward way with a standard exclusive scan and for
r is, we first have reverse the list, then scan, and then reverse it back.

The Reduce Rule

The differentiation of reduce results in the following statements

let y = reduce ⊙ e⊙ [a0, a1, . . . , an−1]
}

Forward sweep
...

let ls = scan ⊙ e⊙ as
let rs = reverse as ▷ scan (λx y → y ⊙ x) e⊙ ▷ reverse

Reverse sweep
let as += map

(
λli ai ri → ∂(li⊙ai⊙ri)

∂ai
y
)
ls as rs

The rule is asymptotics-preserving: scan has the same asymptotics as reduce.
Specialized rules for other operators (+, min, max, ∗) admit even more efficient
implementations.

The Reduce Rule

The differentiation of reduce results in the following statements

let y = reduce ⊙ e⊙ [a0, a1, . . . , an−1]
}

Forward sweep
...

let ls = scan ⊙ e⊙ as
let rs = reverse as ▷ scan (λx y → y ⊙ x) e⊙ ▷ reverse

Reverse sweep
let as += map

(
λli ai ri → ∂(li⊙ai⊙ri)

∂ai
y
)
ls as rs

The rule is asymptotics-preserving: scan has the same asymptotics as reduce.
Specialized rules for other operators (+, min, max, ∗) admit even more efficient
implementations.20

24
-0

6-
16 Differentiating Parallel Constructs

The Reduce Rule

- We now have all the ingredients for our rewrite rule for ‘reduce‘, which consists of just the
original statement in the forward sweep, followed by scans to compute the ‘l i‘s and ‘r i‘s.
- Finally, we perform a map over ‘l i‘s, ‘r i‘s and ‘as‘ to compute the adjoint contribution for each
element in the reduce.

Map

Map is equivalent to a parallel for-loop

let xs = map (λa b→ let res = a ∗ b in res) as bs
⇕

forall i = 0 . . . n - 1
xs[i] = as[i] ∗ bs[i]

Differentiating map is straightforward

let as, bs = map (λa b x a0 b0 →
let res = a ∗ b
let a = b ∗ x + a0

let b = a ∗ x + b0

in a, b) as bs xs as0 bs0

Map

Map is equivalent to a parallel for-loop

let xs = map (λa b→ let res = a ∗ b in res) as bs
⇕

forall i = 0 . . . n - 1
xs[i] = as[i] ∗ bs[i]

Differentiating map is straightforward

let as, bs = map (λa b x a0 b0 →
let res = a ∗ b
let a = b ∗ x + a0

let b = a ∗ x + b0

in a, b) as bs xs as0 bs0

20
24

-0
6-

16 Differentiating Parallel Constructs

Map

- Let’s now move on to differentiating map, which is equivalent to an imperative parallel for
loop.
- To differentiate map, we just differentiate the body of the function being mapped and modify
the map to recieve additional arguments necessary to compute the adjoints of the body of the
function being mapped: namely the adjoints of the arrays being mapped over as well as the
adjoint of the LHS of the original statement.

Map

Map is equivalent to a parallel for-loop

let xs = map (λa b→ let res = a ∗ b in res) as bs
⇕

forall i = 0 . . . n - 1
xs[i] = as[i] ∗ bs[i]

Differentiating map is straightforward

let as, bs = map (λa b x a0 b0 →
let res = a ∗ b
let a = b ∗ x + a0

let b = a ∗ x + b0

in a, b) as bs xs as0 bs0

Map

Map is equivalent to a parallel for-loop

let xs = map (λa b→ let res = a ∗ b in res) as bs
⇕

forall i = 0 . . . n - 1
xs[i] = as[i] ∗ bs[i]

Differentiating map is straightforward

let as, bs = map (λa b x a0 b0 →
let res = a ∗ b
let a = b ∗ x + a0

let b = a ∗ x + b0

in a, b) as bs xs as0 bs020
24

-0
6-

16 Differentiating Parallel Constructs

Map

- Let’s now move on to differentiating map, which is equivalent to an imperative parallel for
loop.
- To differentiate map, we just differentiate the body of the function being mapped and modify
the map to recieve additional arguments necessary to compute the adjoints of the body of the
function being mapped: namely the adjoints of the arrays being mapped over as well as the
adjoint of the LHS of the original statement.

Map with Free Variables

Maps involving free variables are more complicated to differentiate

let xs = map (λa→ a ∗ b) as

Naive approach: turn free variables into bound variables.

let xs = map (λa b′ → a ∗ b′) as (replicate n b)

Problem: asymptotically inefficient for partially used free arrays.

Map with Free Variables

Maps involving free variables are more complicated to differentiate

let xs = map (λa→ a ∗ b) as

Naive approach: turn free variables into bound variables.

let xs = map (λa b′ → a ∗ b′) as (replicate n b)

Problem: asymptotically inefficient for partially used free arrays.

20
24

-0
6-

16 Differentiating Parallel Constructs

Map with Free Variables

- If the map involves a free variable, things are more complicated. By turning free variables into
bound variables, we can use our previous approach.
- Unfortunately, this is asymptotically inefficient for partially used arrays.

Efficient Maps with Free Variables

In an impure language, asymptotics-preserving adjoint updates for free array
variables can be implemented as a generalized reduction.
In this setting, the adjoint of a free aray variable as[i] can be updated with an
operation as[i] += v.
In our pure setting, we introduce accumulators.
▶ Write-only view of an array.
▶ Guarantees the generalized reduction properties at the type level.
▶ See the paper for details and optimizations!

Efficient Maps with Free Variables

In an impure language, asymptotics-preserving adjoint updates for free array
variables can be implemented as a generalized reduction.
In this setting, the adjoint of a free aray variable as[i] can be updated with an
operation as[i] += v.
In our pure setting, we introduce accumulators.
▶ Write-only view of an array.
▶ Guarantees the generalized reduction properties at the type level.
▶ See the paper for details and optimizations!

20
24

-0
6-

16 Differentiating Parallel Constructs

Efficient Maps with Free Variables

- In an impure language, asymptotics-preserving adjoint updates can be implemented as a
generalized reduction.
- What this basically looks like is just doing a plus-equals to update the adjoint at specific
indices.
- In our purely functional setting, such updates aren’t possible.
- Instead, to be able to efficiently handle adjoint updates to free array variables, we’ve intro-
duced an *accumulator* construct.
- See the paper for much more detail as well a discussion on optimizing accumulator accesses
to memory.

Loops

Loops

20
24

-0
6-

16 Loops

Let’s now move on to our final construct, which are loops.

Loops

Sequential loops are sugar for tail-recursive functions.
Loop parameters are variables which are variant through the loop and are
returned as the result of the loop.

loop y = 2 for i = 0 . . . n - 1 do
let y′ = y ∗ y
in y′

y = 2
for i = 0 . . . n - 1 do
y = y ∗ y

(Imperative analog)

Storing the loop parameter y on the tape for each iteration is required to
preserve asymptotics under differentiation.

Loops

Sequential loops are sugar for tail-recursive functions.
Loop parameters are variables which are variant through the loop and are
returned as the result of the loop.

loop y = 2 for i = 0 . . . n - 1 do
let y′ = y ∗ y
in y′

y = 2
for i = 0 . . . n - 1 do
y = y ∗ y

(Imperative analog)

Storing the loop parameter y on the tape for each iteration is required to
preserve asymptotics under differentiation.20

24
-0

6-
16 Loops

Loops

- Loop statements specify one or more *loop parameters* which are the variant through the
loop and are also the result of the loop.
- In the example on the left, ‘y‘ is the loop parameter. Each iteration it’s squared and then
returned after n iterations.
- Until now, our approach to differentiation has been entirely re-computation based. This strat-
egy doesn’t work for loops: must store the loop parameter for each iteration on a tape in order
to preserve the asymptotics of the original program.

Differentiating Loops

let y′′ =
loop y = y0 for i = 0 . . . n - 1 do
stmsloop
in y′

1. Re-execute the original loop, save
the value of y in each iteration in ys.

2. Compute the adjoint contributions of
the loop.

▶ Run the loop backwards
▶ Restore the value of y from ys
▶ Re-execute the body of the original

loop
▶ Compute the adjoints of the body

2 let ys0 = scratch(n,
3 sizeOf(y0))
4 let (y′′, ys) =
5 loop (y, ys) = (y0, ys0)


Forward sweep

6 for i = 0 . . . n - 1 do
7 let ys[i] = y
8 stmsloop
9 in (y′, ys)
12 let (y′′′, fvsl) =
13 loop (y, fvsl) = (y′′, fvsl0)
14 for i = n - 1 . . . 0 do
15 let y = ys[i]
16

−−−−→
stmsloop


Reverse sweep

17
←−−−−
stmsloop

18 in (y′, fvs′l)
19 let y0 += y′′′

Differentiating Loops

let y′′ =
loop y = y0 for i = 0 . . . n - 1 do
stmsloop
in y′

1. Re-execute the original loop, save
the value of y in each iteration in ys.

2. Compute the adjoint contributions of
the loop.

▶ Run the loop backwards
▶ Restore the value of y from ys
▶ Re-execute the body of the original

loop
▶ Compute the adjoints of the body

2 let ys0 = scratch(n,
3 sizeOf(y0))
4 let (y′′, ys) =
5 loop (y, ys) = (y0, ys0)


Forward sweep

6 for i = 0 . . . n - 1 do
7 let ys[i] = y
8 stmsloop
9 in (y′, ys)
12 let (y′′′, fvsl) =
13 loop (y, fvsl) = (y′′, fvsl0)
14 for i = n - 1 . . . 0 do
15 let y = ys[i]
16

−−−−→
stmsloop


Reverse sweep

17
←−−−−
stmsloop

18 in (y′, fvs′l)
19 let y0 += y′′′20

24
-0

6-
16 Loops

Differentiating Loops

- Let’s now look at how to differentiate the loop on the top left.
1. First, we re-execute the original loop and store the loop parameters for each iteration.
2. We then compute the adjoint contributions of the loop:
* This consists of runing the loop backwards since we compute adjoints in reverse program
order.
* Next we restore the loop parameter from the tape.
* Followed by re-executing the body of the original loop.
* And finally we compute the adjoints of the body.

Differentiating Loops

let y′′ =
loop y = y0 for i = 0 . . . n - 1 do
stmsloop
in y′

1. Re-execute the original loop, save
the value of y in each iteration in ys.

2. Compute the adjoint contributions of
the loop.

▶ Run the loop backwards
▶ Restore the value of y from ys
▶ Re-execute the body of the original

loop
▶ Compute the adjoints of the body

2 let ys0 = scratch(n,
3 sizeOf(y0))
4 let (y′′, ys) =
5 loop (y, ys) = (y0, ys0)


Forward sweep

6 for i = 0 . . . n - 1 do
7 let ys[i] = y
8 stmsloop
9 in (y′, ys)
12 let (y′′′, fvsl) =
13 loop (y, fvsl) = (y′′, fvsl0)
14 for i = n - 1 . . . 0 do
15 let y = ys[i]
16

−−−−→
stmsloop


Reverse sweep

17
←−−−−
stmsloop

18 in (y′, fvs′l)
19 let y0 += y′′′

Differentiating Loops

let y′′ =
loop y = y0 for i = 0 . . . n - 1 do
stmsloop
in y′

1. Re-execute the original loop, save
the value of y in each iteration in ys.

2. Compute the adjoint contributions of
the loop.

▶ Run the loop backwards
▶ Restore the value of y from ys
▶ Re-execute the body of the original

loop
▶ Compute the adjoints of the body

2 let ys0 = scratch(n,
3 sizeOf(y0))
4 let (y′′, ys) =
5 loop (y, ys) = (y0, ys0)


Forward sweep

6 for i = 0 . . . n - 1 do
7 let ys[i] = y
8 stmsloop
9 in (y′, ys)
12 let (y′′′, fvsl) =
13 loop (y, fvsl) = (y′′, fvsl0)
14 for i = n - 1 . . . 0 do
15 let y = ys[i]
16

−−−−→
stmsloop


Reverse sweep

17
←−−−−
stmsloop

18 in (y′, fvs′l)
19 let y0 += y′′′20

24
-0

6-
16 Loops

Differentiating Loops

- Let’s now look at how to differentiate the loop on the top left.
1. First, we re-execute the original loop and store the loop parameters for each iteration.
2. We then compute the adjoint contributions of the loop:
* This consists of runing the loop backwards since we compute adjoints in reverse program
order.
* Next we restore the loop parameter from the tape.
* Followed by re-executing the body of the original loop.
* And finally we compute the adjoints of the body.

Differentiating Loops

let y′′ =
loop y = y0 for i = 0 . . . n - 1 do
stmsloop
in y′

1. Re-execute the original loop, save
the value of y in each iteration in ys.

2. Compute the adjoint contributions of
the loop.
▶ Run the loop backwards

▶ Restore the value of y from ys
▶ Re-execute the body of the original

loop
▶ Compute the adjoints of the body

2 let ys0 = scratch(n,
3 sizeOf(y0))
4 let (y′′, ys) =
5 loop (y, ys) = (y0, ys0)


Forward sweep

6 for i = 0 . . . n - 1 do
7 let ys[i] = y
8 stmsloop
9 in (y′, ys)
12 let (y′′′, fvsl) =
13 loop (y, fvsl) = (y′′, fvsl0)
14 for i = n - 1 . . . 0 do
15 let y = ys[i]
16

−−−−→
stmsloop


Reverse sweep

17
←−−−−
stmsloop

18 in (y′, fvs′l)
19 let y0 += y′′′

Differentiating Loops

let y′′ =
loop y = y0 for i = 0 . . . n - 1 do
stmsloop
in y′

1. Re-execute the original loop, save
the value of y in each iteration in ys.

2. Compute the adjoint contributions of
the loop.
▶ Run the loop backwards

▶ Restore the value of y from ys
▶ Re-execute the body of the original

loop
▶ Compute the adjoints of the body

2 let ys0 = scratch(n,
3 sizeOf(y0))
4 let (y′′, ys) =
5 loop (y, ys) = (y0, ys0)


Forward sweep

6 for i = 0 . . . n - 1 do
7 let ys[i] = y
8 stmsloop
9 in (y′, ys)
12 let (y′′′, fvsl) =
13 loop (y, fvsl) = (y′′, fvsl0)
14 for i = n - 1 . . . 0 do
15 let y = ys[i]
16

−−−−→
stmsloop


Reverse sweep

17
←−−−−
stmsloop

18 in (y′, fvs′l)
19 let y0 += y′′′20

24
-0

6-
16 Loops

Differentiating Loops

- Let’s now look at how to differentiate the loop on the top left.
1. First, we re-execute the original loop and store the loop parameters for each iteration.
2. We then compute the adjoint contributions of the loop:
* This consists of runing the loop backwards since we compute adjoints in reverse program
order.
* Next we restore the loop parameter from the tape.
* Followed by re-executing the body of the original loop.
* And finally we compute the adjoints of the body.

Differentiating Loops

let y′′ =
loop y = y0 for i = 0 . . . n - 1 do
stmsloop
in y′

1. Re-execute the original loop, save
the value of y in each iteration in ys.

2. Compute the adjoint contributions of
the loop.
▶ Run the loop backwards
▶ Restore the value of y from ys

▶ Re-execute the body of the original
loop

▶ Compute the adjoints of the body

2 let ys0 = scratch(n,
3 sizeOf(y0))
4 let (y′′, ys) =
5 loop (y, ys) = (y0, ys0)


Forward sweep

6 for i = 0 . . . n - 1 do
7 let ys[i] = y
8 stmsloop
9 in (y′, ys)
12 let (y′′′, fvsl) =
13 loop (y, fvsl) = (y′′, fvsl0)
14 for i = n - 1 . . . 0 do
15 let y = ys[i]
16

−−−−→
stmsloop


Reverse sweep

17
←−−−−
stmsloop

18 in (y′, fvs′l)
19 let y0 += y′′′

Differentiating Loops

let y′′ =
loop y = y0 for i = 0 . . . n - 1 do
stmsloop
in y′

1. Re-execute the original loop, save
the value of y in each iteration in ys.

2. Compute the adjoint contributions of
the loop.
▶ Run the loop backwards
▶ Restore the value of y from ys

▶ Re-execute the body of the original
loop

▶ Compute the adjoints of the body

2 let ys0 = scratch(n,
3 sizeOf(y0))
4 let (y′′, ys) =
5 loop (y, ys) = (y0, ys0)


Forward sweep

6 for i = 0 . . . n - 1 do
7 let ys[i] = y
8 stmsloop
9 in (y′, ys)
12 let (y′′′, fvsl) =
13 loop (y, fvsl) = (y′′, fvsl0)
14 for i = n - 1 . . . 0 do
15 let y = ys[i]
16

−−−−→
stmsloop


Reverse sweep

17
←−−−−
stmsloop

18 in (y′, fvs′l)
19 let y0 += y′′′20

24
-0

6-
16 Loops

Differentiating Loops

- Let’s now look at how to differentiate the loop on the top left.
1. First, we re-execute the original loop and store the loop parameters for each iteration.
2. We then compute the adjoint contributions of the loop:
* This consists of runing the loop backwards since we compute adjoints in reverse program
order.
* Next we restore the loop parameter from the tape.
* Followed by re-executing the body of the original loop.
* And finally we compute the adjoints of the body.

Differentiating Loops

let y′′ =
loop y = y0 for i = 0 . . . n - 1 do
stmsloop
in y′

1. Re-execute the original loop, save
the value of y in each iteration in ys.

2. Compute the adjoint contributions of
the loop.
▶ Run the loop backwards
▶ Restore the value of y from ys
▶ Re-execute the body of the original

loop

▶ Compute the adjoints of the body

2 let ys0 = scratch(n,
3 sizeOf(y0))
4 let (y′′, ys) =
5 loop (y, ys) = (y0, ys0)


Forward sweep

6 for i = 0 . . . n - 1 do
7 let ys[i] = y
8 stmsloop
9 in (y′, ys)
12 let (y′′′, fvsl) =
13 loop (y, fvsl) = (y′′, fvsl0)
14 for i = n - 1 . . . 0 do
15 let y = ys[i]
16

−−−−→
stmsloop


Reverse sweep

17
←−−−−
stmsloop

18 in (y′, fvs′l)
19 let y0 += y′′′

Differentiating Loops

let y′′ =
loop y = y0 for i = 0 . . . n - 1 do
stmsloop
in y′

1. Re-execute the original loop, save
the value of y in each iteration in ys.

2. Compute the adjoint contributions of
the loop.
▶ Run the loop backwards
▶ Restore the value of y from ys
▶ Re-execute the body of the original

loop

▶ Compute the adjoints of the body

2 let ys0 = scratch(n,
3 sizeOf(y0))
4 let (y′′, ys) =
5 loop (y, ys) = (y0, ys0)


Forward sweep

6 for i = 0 . . . n - 1 do
7 let ys[i] = y
8 stmsloop
9 in (y′, ys)
12 let (y′′′, fvsl) =
13 loop (y, fvsl) = (y′′, fvsl0)
14 for i = n - 1 . . . 0 do
15 let y = ys[i]
16

−−−−→
stmsloop


Reverse sweep

17
←−−−−
stmsloop

18 in (y′, fvs′l)
19 let y0 += y′′′20

24
-0

6-
16 Loops

Differentiating Loops

- Let’s now look at how to differentiate the loop on the top left.
1. First, we re-execute the original loop and store the loop parameters for each iteration.
2. We then compute the adjoint contributions of the loop:
* This consists of runing the loop backwards since we compute adjoints in reverse program
order.
* Next we restore the loop parameter from the tape.
* Followed by re-executing the body of the original loop.
* And finally we compute the adjoints of the body.

Differentiating Loops

let y′′ =
loop y = y0 for i = 0 . . . n - 1 do
stmsloop
in y′

1. Re-execute the original loop, save
the value of y in each iteration in ys.

2. Compute the adjoint contributions of
the loop.
▶ Run the loop backwards
▶ Restore the value of y from ys
▶ Re-execute the body of the original

loop
▶ Compute the adjoints of the body

2 let ys0 = scratch(n,
3 sizeOf(y0))
4 let (y′′, ys) =
5 loop (y, ys) = (y0, ys0)


Forward sweep

6 for i = 0 . . . n - 1 do
7 let ys[i] = y
8 stmsloop
9 in (y′, ys)
12 let (y′′′, fvsl) =
13 loop (y, fvsl) = (y′′, fvsl0)
14 for i = n - 1 . . . 0 do
15 let y = ys[i]
16

−−−−→
stmsloop


Reverse sweep

17
←−−−−
stmsloop

18 in (y′, fvs′l)
19 let y0 += y′′′

Differentiating Loops

let y′′ =
loop y = y0 for i = 0 . . . n - 1 do
stmsloop
in y′

1. Re-execute the original loop, save
the value of y in each iteration in ys.

2. Compute the adjoint contributions of
the loop.
▶ Run the loop backwards
▶ Restore the value of y from ys
▶ Re-execute the body of the original

loop
▶ Compute the adjoints of the body

2 let ys0 = scratch(n,
3 sizeOf(y0))
4 let (y′′, ys) =
5 loop (y, ys) = (y0, ys0)


Forward sweep

6 for i = 0 . . . n - 1 do
7 let ys[i] = y
8 stmsloop
9 in (y′, ys)
12 let (y′′′, fvsl) =
13 loop (y, fvsl) = (y′′, fvsl0)
14 for i = n - 1 . . . 0 do
15 let y = ys[i]
16

−−−−→
stmsloop


Reverse sweep

17
←−−−−
stmsloop

18 in (y′, fvs′l)
19 let y0 += y′′′20

24
-0

6-
16 Loops

Differentiating Loops

- Let’s now look at how to differentiate the loop on the top left.
1. First, we re-execute the original loop and store the loop parameters for each iteration.
2. We then compute the adjoint contributions of the loop:
* This consists of runing the loop backwards since we compute adjoints in reverse program
order.
* Next we restore the loop parameter from the tape.
* Followed by re-executing the body of the original loop.
* And finally we compute the adjoints of the body.

Loop Strip-mining

Loop strip-mining partitions a loop into a loop nest

loop y = y0 for i = 0 . . . n3 - 1 do loop yj = y0 for j = 0 . . . n - 1 do
stms =⇒ loop yk = yj for k = 0 . . . n - 1 do

loop ym = yk for m = 0 . . . n - 1 do
let i = j ∗ n2/3 + k ∗ n1/3 +m
stms

For the original loop, we save n3 versions of y on the tape.
For the strip-mined loop, only 3n versions are saved.

Loop Strip-mining

Loop strip-mining partitions a loop into a loop nest

loop y = y0 for i = 0 . . . n3 - 1 do loop yj = y0 for j = 0 . . . n - 1 do
stms =⇒ loop yk = yj for k = 0 . . . n - 1 do

loop ym = yk for m = 0 . . . n - 1 do
let i = j ∗ n2/3 + k ∗ n1/3 +m
stms

For the original loop, we save n3 versions of y on the tape.
For the strip-mined loop, only 3n versions are saved.

20
24

-0
6-

16 Loops

Loop Strip-mining

- Saving loop parameters for large loops can be expensive and use large amounts of memory.
- One technique to address this is *loop strip-mining*. This partitions a loop into loop nest.
- In the figure, we strip-mine a loop that does n cubed iteration into a nest of three loops which
each do n iterations.
- When differentiated, each loop in the loop nest only saves its own loop parameters, meaning
that we only save 3*n loop parameters instead of n cubed.
- Strip-mining results in additional re-execution overhead, but the overhead is generally vest
modest.

Benchmarks

Benchmarks

20
24

-0
6-

16 Benchmarks

Implementation

Implemented the AD transformation as a compiler pass in the Futhark compiler.
Futhark is a high-level, nested-parallel, purely functional array language.
The language described thus far is a close approximation of Futhark’s IR.

Implementation

Implemented the AD transformation as a compiler pass in the Futhark compiler.
Futhark is a high-level, nested-parallel, purely functional array language.
The language described thus far is a close approximation of Futhark’s IR.

20
24

-0
6-

16 Benchmarks

Implementation

CPU Benchmarks - ADBench

BA

D-L
ST

M
GMM

0

5

10

13

3.
2

5.
1

10
.3

4.
5 5.

4

8.
6

6.
2

4.
6

Futhark
Tapenade
Manual

HAND-C

HAND-S
0

20

40

60

50

45

3,
75

8

59

4.
6

4.
4

ADBench: a collection of AD
benchmarks for comparing
sequential AD tools.
Benchmarked Futhark using its C
backend.
Performance measured in AD
overhead:

differentiated runtime
original runtime

CPU Benchmarks - ADBench

BA

D-L
ST

M
GMM

0

5

10

13

3.
2

5.
1

10
.3

4.
5 5.

4

8.
6

6.
2

4.
6

Futhark
Tapenade
Manual

HAND-C

HAND-S
0

20

40

60

50

45

3,
75

8

59

4.
6

4.
4

ADBench: a collection of AD
benchmarks for comparing
sequential AD tools.
Benchmarked Futhark using its C
backend.
Performance measured in AD
overhead:

differentiated runtime
original runtime

20
24

-0
6-

16 Benchmarks

CPU Benchmarks - ADBench

- First up is ADBench, which is a suite of standardized sequential CPU benchmarks for AD
implementations.
- The main metric here is *AD overhead* which is just the ratio of the runtimes of the differen-
tiated program with the original program. Ideally, this ratio should always be a small constant.
- ADBench includes five diferent benchmarks and we show the AD overheads for Futhark and
Tapenade, an AD tool for C, on the left.
- Also shown are overheads for manually differentiated implementations, which are hand-
derived and optimized to be as fast as possible and don’t use AD techniques.
- In the graphs we see that Futhark does very well in comparison to Tapenade in all

GPU Benchmarks - vs. Enzyme

RSB
en

ch

XSB
en

ch
LB

M
0

2

4

6
3.

9

2.
7

5.
1

4.
2

3.
2

6.
3

Futhark
Enzyme

Performance measured in AD overhead:

differentiated runtime
original runtime

Enzyme is state-of-the-art LLVM compiler
plugin that performs AD on a low-level
imperative IR.
RSBench and XSBench are comprised of
a large parallell loop with inner
sequential loops and branches.
LBM consists of a large sequential loop
containing a parallel loop.

GPU Benchmarks - vs. Enzyme

RSB
en

ch

XSB
en

ch
LB

M
0

2

4

6

3.
9

2.
7

5.
1

4.
2

3.
2

6.
3

Futhark
Enzyme

Performance measured in AD overhead:

differentiated runtime
original runtime

Enzyme is state-of-the-art LLVM compiler
plugin that performs AD on a low-level
imperative IR.
RSBench and XSBench are comprised of
a large parallell loop with inner
sequential loops and branches.
LBM consists of a large sequential loop
containing a parallel loop.20

24
-0

6-
16 Benchmarks

GPU Benchmarks - vs. Enzyme

- Here we compare against Enzyme on the GPU, a state-of-the-art AD system which performs
AD on low-level code.
- Futhark is competitive with Enzyme on all of the benchmarks.
- Shows that our high-level, simple re-computation based approach can be competitive with
low level approaches.

GPU Benchmarks - k-means

Dataset 0
0

20

40

41
13

41
16

28

Fut-AD
Fut-Manual

PyTorch
JAX

JAX-VMap

Dataset 1
0

5

10

15

20
11

19
9

2
10

8

Dataset 2
0

500

1,000

10
9

94
92

2
20

7
97

6

Performance measured in
miliseconds.
k-means clustering using
AD-based Newton’s method
to find cluster centers.
PyTorch and JAX use
hand-tuned matrix
primitives; JAX(vmap)
instead uses JAX’s
vectorizing map operation
for these operations, in
analog with Futhark.

GPU Benchmarks - k-means

Dataset 0
0

20

40

41
13

41
16

28

Fut-AD
Fut-Manual

PyTorch
JAX

JAX-VMap

Dataset 1
0

5

10

15

20

11
19

9
2

10
8

Dataset 2
0

500

1,000

10
9

94
92

2
20

7
97

6

Performance measured in
miliseconds.
k-means clustering using
AD-based Newton’s method
to find cluster centers.
PyTorch and JAX use
hand-tuned matrix
primitives; JAX(vmap)
instead uses JAX’s
vectorizing map operation
for these operations, in
analog with Futhark.20

24
-0

6-
16 Benchmarks

GPU Benchmarks - k-means

- In this benchmark, we use AD to solve k-means clustering.
-We compare Futhark AD against the classic k-means algorithm in Futhark,denoted Fut-Manual,
and against AD implementations in PyTorch and JAX.
- JAX and PyTorch rely array primitives to express computations and benefit from hand-written,
highly optmized derivatives of these primitives.
- To better compare with Futhark’s unrestricted model, we also compare against a version of
JAX that only uses general parallel constructs which is denoted JAX-VMap.
-Futhark meets or exceeds the performance of PyTorch in all benchmarks and does significantly
better than JAX with array primitives as datasets become larger.
- Without JAX’s array primitives, Futhark is on par with or demonstrates magnitude-level speed-
ups over JAX.

GPU Benchmarks - Sparse k-means

movielens
0

0.5

1

1.5

0.
16

6
·1

0−
2

1.
47

0.
38

Fut-AD
Fut-Manual

PyTorch
JAX

nytimes
0

2

4
0.

3
9
·1

0−
2

5.
24

1.
35

scrna
0

2

4

6

8

10

0.
58

0.
16

9.
32

8.
91

Performance measured in
seconds.
PyTorch and JAX use
hand-tuned matrix
primitives and sparse
libraries.
Futhark just uses a standard
CSR implementation.

GPU Benchmarks - Sparse k-means

movielens
0

0.5

1

1.5

0.
16

6
·1

0−
2

1.
47

0.
38

Fut-AD
Fut-Manual

PyTorch
JAX

nytimes
0

2

4

0.
3

9
·1

0−
2

5.
24

1.
35

scrna
0

2

4

6

8

10

0.
58

0.
16

9.
32

8.
91

Performance measured in
seconds.
PyTorch and JAX use
hand-tuned matrix
primitives and sparse
libraries.
Futhark just uses a standard
CSR implementation.

20
24

-0
6-

16 Benchmarks

GPU Benchmarks - Sparse k-means

- Here we benchmark k-means again, but this time with a sparse representation.
- We see that in all benchmarks, both AD and manual Futhark demonstrate very significant
speed-up, often greater than a magnitude.

GPU Benchmarks - Depth and Memory Consumption

RSB
en

ch

XSB
en

ch
LB

M
GMM

LS
TM

0

0.5

1

1.5

2

2.5

1.
4

1

33
.6

2.
1

2.
1

RSB
en

ch

XSB
en

ch
LB

M
GMM

LS
TM

0

2

4

6

6 6

5

4 4

Depth
Mem. Overhead

AD Memory overhead:

differentiated mem. consumption
original mem. consumption

With loop strip-mining, LBM’s
memory overhead is reduced to
8.7, with only a 1.3× increase in
runtime.
Strong performance on programs
with non-trivial depth
demonstrates the viability of a
recomputation-based approach
to AD.

GPU Benchmarks - Depth and Memory Consumption

RSB
en

ch

XSB
en

ch
LB

M
GMM

LS
TM

0

0.5

1

1.5

2

2.5

1.
4

1

33
.6

2.
1

2.
1

RSB
en

ch

XSB
en

ch
LB

M
GMM

LS
TM

0

2

4

6

6 6

5

4 4

Depth
Mem. Overhead

AD Memory overhead:

differentiated mem. consumption
original mem. consumption

With loop strip-mining, LBM’s
memory overhead is reduced to
8.7, with only a 1.3× increase in
runtime.
Strong performance on programs
with non-trivial depth
demonstrates the viability of a
recomputation-based approach
to AD.20

24
-0

6-
16 Benchmarks

GPU Benchmarks - Depth and Memory Consumption

- AD memory overhead is just the ratio of the memory consumption of the differentiated pro-
gram to the original program.
- We expect this ratio to be a small constant factor and indeed that is the case for most bench-
marks, with the exception for LBM.
- LBM features a large outer sequential loop, so we have to store many loop parameters on a
tape for each iteration of the loop.
- Using our strip-minig technique, we can decrease the memory overhead to under 10, with
only a small 1.3 times increase in runtime.
- Plot in red shows the maximal depth of each benchmark, which shows that these benchmarks
include non-trivial depth.

Conclusions

Conclusions

20
24

-0
6-

16 Conclusions

Conclusions

AD in a nested-parallel, high-level and hardware-neutral functional language.
Key idea: high-level differentiation using specialized rules for parallel
combinators.
Key idea: re-computation instead of a tape (except for loops!).
Strong performance against state-of-the-art AD competitors.
The implementation is available now in the Futhark compiler–try it out!

https://futhark-lang.org

Conclusions

AD in a nested-parallel, high-level and hardware-neutral functional language.
Key idea: high-level differentiation using specialized rules for parallel
combinators.
Key idea: re-computation instead of a tape (except for loops!).
Strong performance against state-of-the-art AD competitors.
The implementation is available now in the Futhark compiler–try it out!

https://futhark-lang.org

20
24

-0
6-

16 Conclusions

Conclusions

https://futhark-lang.org
https://futhark-lang.org

	A Very Short Introduction to AD
	AD Transformation
	Differentiating Parallel Constructs
	Loops
	Benchmarks
	Conclusions

