
U N I V E R S I T Y O F C O P E N H A G E N
F A C U L T Y O F S C I E N C E

PhD thesis
Robert Schenck

Two Things I Did
Parallel Differentiation and Rank Polymorphism

Advisors: Fritz Henglein, Cosmin E. Oancea, Troels Henriksen.

Handed in: December 30, 2024. Last Updated: March 18, 2025.

This thesis has been submitted to the PhD School of The Faculty of Science, University of Copenhagen.

2

Abstract

In this thesis, I describe two things I did: (1) a compiler transformation that implements
performant automatic differentiation (AD) for a functional, data-parallel language and
(2) an approach for rank polymorphism in a statically typed language with parametric
polymorphism and type inference.

On the AD side of things, a method for efficient reverse mode AD on nested par-
allel programs is presented. The approach uses a recomputation-based approach that
eliminates storing program variables for the reverse sweep; instead, variables are re-
computed as needed in each new scope. Under this technique, perfectly nested scopes
do not introduce recomputation. This is exploited by applying a repertoire of compiler
transformations to transform code into perfect nests. The language uses a lexicon of
high-level parallel combinators—such as map, reduce, and scan—to build parallel-
by-construction programs. Rewrite rules to differentiate each combinator are derived,
yielding nested-parallel code which itself consists of parallel combinators. The result-
ing parallel code is aggressively optimized using a suite of general and AD-specific
optimizations. An implementation in the Futhark programming language is reported
on and evaluated against existing other modern AD implementations on a suite of
benchmarks, demonstrating competitive performance.

On the rank polymorphism side of things, a mechanism for automatically lifting
functions and replicating function arguments in a static context is presented. The aim
is to capture the programming experience in dynamically typed array languages like
NumPy and APL, which permit rank-polymorphic applications, while also preserv-
ing static typing guarantees. The type system—which supports parametric polymor-
phism, higher-order functions, and top-level let-generalization—determines the mini-
mum number of lifting and replication operations by generating (and solving) integer
linear programs from constraints generated at function application sites. Key theo-
retical properties of the mechanism are given. An implementation of the mechanism
within the Futhark compiler is described and demonstrates the system’s practicality.

3

Resumé

Foreliggende afhandling redegør for mine to bedrifter: (1) udførsel af en automatisk
programbearbejdning, der kan udføre automatisk differentiering (AD) af programmer
skrevet i et funktionsorienteret og dataparallelt programmeringssprog, samt (2) en
tilgang til rangpolymorfi i et programmeringssprog med statiske typer, parametrisk
polymorfi, og typeinferens.

For så vidt vedrører AD, da præsenterer jeg en effektiv fremgangsmåde for den
såkaldte bagvendte tilgang. Denne fremgangsmåde undgår den sædvanlige lagring
af de mellemresultater der skal bruges til returgennemløbet, og genberegner i stedet
de nødvendige resultater for hvert indlejringstrin i programmet. Som et særtilfælde
kræver perfekt indlejrede løkker ikke genberegning; en egenskab der udnyttes ved
at foretage automatisk omskrivning af programtekst til slig perfekt indlejrede løkker.
Det sprog, hvorpå jeg udfører automatisk differentiering, udtrykker deterministisk
parallelisme via kombinatorer såsom map, reduce, og scan. Differentieringsreglerne
for hver af disse kombinatorer gives, som ligeledes er udtrykt via tilsvarende parallelle
kombinatorer. Den herfra dannede parallelle programtekst optimeres derefter gennem
en række almene og specialiserede programoptimeringsteknikker. En konkret udførsel
af fremgangsmåden er foretaget på oversætteren for programmeringssproget Futhark,
og via en eksperimentel sammenligning af køretidsresultater med andre værktøjer til
AD, demonstreres en konkurrencedygtig præstation.

For så vidt vedrører rangpolymorfi, da redegør jeg for en fremgangsmåde til automa-
tisk tilpasning af funktioner og funktionsargumenter således at de kan anvendes på data
af udvidet rang. Hensigten med denne fremgangsmåde er at imitere programmeringso-
plevelsen i dynamisk typede geledsprog såsom NumPy og APL, der tillader rankpoly-
morfe funktionsanvendelser, men også samtidigt at bevare ønskværdige typesystems-
garantier. Typesystemet understøtter parametrisk polymorfi, højereordensfunktioner,
samt let-generalisering, og er derudover i stand til at afgøre den minimale udvidelse af
funktioner til argumenter af højere rang, ved at løse lineære heltalsproblemer dannet ud
fra de typeligninger der opstår ved funktionsanvendelsespunkter. Centrale teoretiske
egenskaber for systemet præsenteres. En implementering af fremgangsmåden, udført
ved en udvidelse af oversætteren for programmeringssproget Futhark, er blevet udført,
hvilket tjener til at tydeliggøre typesystemets praktiske anvendelighed.

Contents

1 Introduction 9
1.1 Scientific Programming Languages . 9
1.2 Futhark . 10
1.3 Automatic Differentiation . 11
1.4 Rank Polymorphism . 12

2 Background 14
2.1 Futhark . 14
2.2 Language . 15

2.2.1 Basics . 15
2.2.2 SOACs . 16

3 Parallel Automatic Differentiation 19
3.1 Introduction . 19
3.2 Preliminaries . 21

3.2.1 Forward mode . 21
3.2.2 Reverse mode . 23
3.2.3 AD Interface . 24
3.2.4 Source Language . 25
3.2.5 Example: 𝑘-means . 26

3.3 Reverse Mode AD by Redundant Execution 27
3.3.1 Transformation Rules Across Scopes 27
3.3.2 Reverse Mode Transformation for Loops 29
3.3.3 Perfect Nests Do Not Incur Redundant Execution 30

3.4 Rewrite Rules for Parallel Constructs . 31
3.4.1 Reduce . 31
3.4.2 Histogram . 33
3.4.3 Scan . 34
3.4.4 Parallel Scatter . 35
3.4.5 Map . 35

3.5 Implementation and Optimizations . 37
3.5.1 Optimizing Accumulators . 37
3.5.2 Loop Optimizations and Limitations 38

3.6 Experimental Evaluation . 39
3.6.1 Parallel Hardware and Methodology 39
3.6.2 ADBench: Sequential AD Overhead 40
3.6.3 Comparison with Enzyme . 40
3.6.4 Case Study 1: Dense 𝑘-means Clustering 41
3.6.5 Case Study 2: Sparse 𝑘-means Clustering 42

4

CONTENTS 5

3.6.6 Case Study 3: GMM . 42
3.6.7 Case Study 4: LSTM . 43
3.6.8 Depth and Memory Consumption 44

3.7 Related Work . 45
3.8 Conclusions . 46

4 Automap 47
4.1 Introduction . 47
4.2 Motivation . 50

4.2.1 Idea . 50
4.2.2 Examples . 51
4.2.3 Desired Properties . 52

4.3 Formalization . 53
4.3.1 Preliminaries and Language Grammars 55

4.4 Target Language . 56
4.5 Internal Language . 59

4.5.1 Constraints . 59
4.5.2 Internal Type System . 59

4.6 Rank Analysis . 61
4.6.1 Rank . 61
4.6.2 Rank Constraints . 62
4.6.3 Size and Ambiguity . 62
4.6.4 Rank Constraint Set Solving using Integer Linear Programming . 63
4.6.5 Constraint Set Solving . 63

4.7 Transformation to the Target Language 65
4.7.1 Well-Typedness . 66
4.7.2 Backwards Consistency . 66
4.7.3 Forwards Consistency . 68

4.8 Implementation . 68
4.8.1 Constraint Generation . 68
4.8.2 ILP Solving . 68
4.8.3 Residual Solving . 69
4.8.4 Elaboration . 70

4.9 Evaluation . 70
4.9.1 Quantifying maps . 71
4.9.2 Impact on Type Checking . 72
4.9.3 Programmer Experience . 72

4.10 Future Work . 72
4.10.1 Higher-order Functions . 72
4.10.2 Solving Constraints Locally . 73
4.10.3 Efficient Ambiguity Checking . 73

4.11 Related Work . 73
4.11.1 Data Parallelism . 73
4.11.2 Type Systems and Type Inference 74
4.11.3 Implicit Program Constructs . 74

4.12 Conclusions . 75

5 Future Third Things 76

Bibliography 77

6 CONTENTS

A Proofs for Automap 88
A.4 Target Language . 88
A.6 Rank Analysis . 93

A.6.5 Constraint Set Solving . 93
A.7 Transformation to the Target Language 95

A.7.1 Well-Typedness . 95
A.7.2 Backwards Consistency . 96
A.7.3 Forwards Consistency . 99

Preface

Publications
During my studies, I worked on the following publications:

1. Martin Elsman, Fritz Henglein, Robin Kaarsgaard, Mikkel Kragh Mathiesen, and
Robert Schenck. “Combinatory Adjoints and Differentiation”. In: Electronic

Proceedings in Theoretical Computer Science 360 (June 2022), pp. 1–26. issn: 2075-
2180. doi: 10.4204/eptcs.360.1. url: http://dx.doi.org/10.4204/
EPTCS.360.1

2. Robert Schenck, Ola Rønning, Troels Henriksen, and Cosmin E. Oancea. “AD for
an Array Language with Nested Parallelism”. In: Proceedings of the International

Conference on High Performance Computing, Networking, Storage and Analysis. SC ’22.
Dallas, Texas: IEEE Press, 2022. isbn: 9784665454445

3. Robert Schenck, Nikolaj Hey Hinnerskov, Troels Henriksen, Magnus Madsen, and
Martin Elsman. “AUTOMAP: Inferring Rank-Polymorphic Function Applications
with Integer Linear Programming”. In: Proceedings of the ACM on Programming

Languages 8.OOPSLA2 (2024). doi: 10.1145/3689774. url: https://doi.
org/10.1145/3689774

This thesis is based off of publications 2 and 3.

Acknowledgments
A lot of people have been involved with and enabled the work in this thesis—often
directly as collaborators and colleagues, but also in other supportive capacities. First
and foremost, warm thanks to my advisors: Fritz Henglein, Cosmin E. Oancea, and
Troels Henriksen. Fritz, for his deep and unique insights, active encouragement to
explore my interests, and support throughout my PhD; Cosmin, for being the king of
no bullshit, as well as a great collaborator and friend; and Troels, for his infectious
capacity for (principled) irreverence and his sagely teachings (the most important of
which is that IRC is indeed the best channel for research). I’d also like to thank Thomas
Hamelryck for his support and rousing of many stimulating discussions.

I’ve had the pleasure (hopefully mutual) of sharing an office with many colleagues
during my PhD. I shared my first office with Lys Sanz Moreta and Ola Rønning—both
of whom added (much needed) levity to my early PhD days (albeit in very different
ways). Mikkel Kragh Mathiesen soon joined (or, rather, we joined him) and was always
willing to discuss ideas (and laments!) and impress us with his insights. After some
moving around and graduations, I spent my last year in the company of Zhan Su,

7

https://doi.org/10.4204/eptcs.360.1
http://dx.doi.org/10.4204/EPTCS.360.1
http://dx.doi.org/10.4204/EPTCS.360.1
https://doi.org/10.1145/3689774
https://doi.org/10.1145/3689774
https://doi.org/10.1145/3689774

8 CONTENTS

Nikolaj Hey Hinnerskov, and Frans Zdyb, all of whom were great company. Special
thanks go to Nikolaj for many fruitful discussions as a collaborator and for putting
up with all my mischief and idiosyncrasies. Another thanks goes to Duarte David,
for tolerating my messages of “AAAAAAAAAAAAAAAAAAAAAAAA” sent in despair
as we both chipped away at our respective degrees. Many other colleagues at DIKU
have supported me and made my PhD a rewarding and enjoyable (well, sometimes)
experience—thank you!

I’m also grateful to my dad, brother, and sister for all their support, the dynamic of
which remains unchanged from this photo:

My dad, sister, me, and my brother in the 90s.

My PhD work has been supported by the Independent Research Fund Denmark
(DFF) under the grant Deep Probabilistic Programming for Protein Structure Prediction.
Thank you!

Finally, thanks to Troels Henriksen and Niels G. W. Serup for diligently translating
the English abstract of this thesis into Danish.

Chapter 1

Introduction

This thesis describes two things I did during my PhD studies—namely, the develop-
ment of techniques for parallel automatic differentiation and a pragmatic approach for
rank polymorphism in static type systems with parametric polymorphism. To the initi-
ated, these two projects might seem rather disparate—superficially, they are! However,
it wouldn’t be remiss to classify them under the umbrella of scientific programming
language research. To that end, let’s take a look at some of the languages and tools used
in scientific programming and how the work in this thesis fits within the discipline.

1.1 Scientific Programming Languages
FORTRAN, developed in the 1950s at IBM by John Backus (and friends) is arguably the
first scientific programming language, and certainly the oldest one still in use today.
The focus of the project was on designing an efficient compiler, rather than on language
design; in Backus’ words: ”We simply made up the language as we went along.” [6].
That’s not to say that Backus and his group entirely ignored the issue; indeed, the
now ubiquitous Backus-Naur form for specifying language grammars was born in the
FORTRAN project (so there was certainly some degree of rigor) and abstracting the
details of the underlying machine’s instruction set was an explicit goal. [60]

About a decade later, in the late 1960s and early 1970s, C emerged. [92] Unlike
FORTRAN, C (and later C++) was built to be a general-purpose language. Its low-
level access enabled programmers to write fast and efficient code—though usually with
considerable effort.

Around the same time as Backus was working on FORTRAN, Kenneth E. Iverson
and Adin Falkoff were designing APL [32]. Unlike Backus’ compiler-first approach, APL
was initially just a language/notation system and only later—in the mid 1960s—did an
implementation materialize. Perhaps this language-first design is one of the reasons
why APL was and remains radically different from most programming languages. APL
uses a vocabulary of special symbols to define operations on arrays, creating concise,
mathematical programs. This approach abstracts the imperative programming disci-
pline of FORTRAN and C; instead, programs define how to manipulate data directly.

In practice, APL often runs slower than FORTRAN or C—not because abstraction
is intrinsically slower, but because its efficient execution depends on compiler opti-
mizations. Abstraction delineates computation from its implementation—abstraction
can reveal properties of a computation that compilers can exploit. For example, APL’s
array calculus is inherently parallel. An optimizing compiler can automatically map

9

10 CHAPTER 1. INTRODUCTION

parallelism in APL programs to hardware parallelism precisely because the program
is written in terms of APL’s high-level operators. Doing the same for a C program
requires more sophisticated analyses that often become impractical (or impossible) for
large programs. The challenge of creating performant languages with a high level of ab-
straction is not inherently with abstraction, but rather, with the marriage of abstraction
and compiler technology to effectively exploit said abstraction.

More recently, the field has moved towards dynamic languages like Python and
MATLAB. Many of these languages do expose a fairly high-level interface to the pro-
grammer, but do so with inconsistent interfaces, semantics, and performance, often the
result of features being designed/implemented in an ad-hoc way. A good example of
this is NumPy [43], a numerical computing library for Python. It suffers from pitfalls like
array operators that don’t always support broadcasting (some operators broadcast, oth-
ers don’t), non-intuitive function behavior (input shapes can alter function semantics),
and spotty in-place updates (confusingly limited to compound assignments). Many of
these flaws stem from NumPy’s evolutionary nature as a numerical computing library
retrofitted to a dynamic language.

The best remedy for ad-hoc inconsistency is, of course, rigorous and principled
abstraction. A clear, consistent interface that captures the essence of a computation—
without noise and ambiguity—enhances both programmer productivity and perfor-
mance. The entire compiler pipeline—from the source language to the backend—stands
to benefit from such an approach, which this thesis demonstrates. Chapter 3 shows
how a high-level declarative IR enables a simple rewrite-rule based approach for auto-
matic differentiation; these rules are easy to verify and optimize thanks to the clarity of
the abstraction. Chapter 4 presents an approach for broadcasting in a static context in
an unsurprising, well-defined, and operator-invariant way—avoiding the pitfalls (and
programmer confusion) of more ad-hoc approaches. This is, again, enabled by a high
level of abstraction coupled with a few simple rules. These examples demonstrate
that scientific programming languages benefit from a principled approach to language
design and compiler optimizations/transformations.

1.2 Futhark
The Futhark programming language1 [44, 47] (and its compiler) serves as the primary
context for the work in this thesis; both of the projects described were realized as
extensions to Futhark. Futhark is a statically typed, parallel, functional array language
designed to support arbitrary nested parallelism. It is a pure language with a type
system in the Hindley-Milner tradition that supports parametric polymorphism and
top-level let-generalization. A lexicon of higher-order parallel combinators—including
map, reduce, and scan—form the vocabulary by which programs in Futhark are
built and enable a high-level, declarative approach to writing parallel-by-construction
programs. Optimizing transformations over these combinators are what enable the
Futhark compiler to generate high-performance code. Chapter 2 provides a more
detailed introduction to Futhark.

The remainder of this chapter provides a brief, high-level introduction to automatic
differentiation and rank polymorphism and the research that I did in these areas during
my PhD studies.

The image at the start of this chapter is of a soundly sleeping hedgehog, dreaming
of GOING FAST!! (Hedgehogs are the mascot of the Futhark programming language.)

1https://futhark-lang.org

https://futhark-lang.org

1.3. AUTOMATIC DIFFERENTIATION 11

1.3 Automatic Differentiation
Automatic differentiation (AD) (sometimes also called algorithmic differentiation) is a
technique for efficiently computing the derivatives of computer programs. AD exploits
the fact that all differentiable computer programs are ultimately compositions of simple
functions. Simple functions are easy to programmatically differentiate—just hard code
in the differentiation rules (e.g., the differentiation rule for sin(𝑥) returns cos(𝑥)). The
chain rule is the first tool any calculus practitioner pulls from their tool bag when
differentiating function compositions—it’s the tool for the job in AD as well. In a real
sense, AD is simply the application of the chain rule and basic differentiation rules.
An important distinction from symbolic methods is that AD is only concerned with the
numerical evaluation of a derivative and not a symbolic representation of the derivative.
(Although I’d argue that a declarative program that computes a derivative at point 𝑥 is
itself a symbolic representation of the derivative.)

Since the derivative of any expression depends only on its free variables and their
derivatives, implementing AD involves interlacing a program’s expressions with cor-
responding derivative computations. For example, you can augment the following
program:

def 𝑃 𝑥0 𝑥1 =

let 𝑣 = 𝑥0 · 𝑥1

let 𝑦 = sin(𝑣)
in 𝑦,

to also compute its derivative as follows:

def 𝑃fwd 𝑥0 𝑥1 ¤𝑥0 ¤𝑥1 =

let 𝑣 = 𝑥0 · 𝑥1

let ¤𝑣 = 𝑥1 · ¤𝑥0 + 𝑥0 · ¤𝑥1

let 𝑦 = sin(𝑣)
let ¤𝑦 = cos 𝑣 · ¤𝑣
in (𝑦, ¤𝑦),

where ¤𝑦 is the derivative of variable 𝑦 with respect to the inputs 𝑥0 and 𝑥1 (and
analogously for ¤𝑣). The augmented inputs ¤𝑥0 and ¤𝑥1 specify the direction to take the
derivative in (setting, for example, ¤𝑥0 = 1 and ¤𝑥1 = 0 would yield the derivative with
respect to ¤𝑥0). This basic approach, called forward mode AD, is an efficient/effective way
to differentiate programs [39]: don’t let the simplicity of the approach mislead you!

Where forward mode AD comes up short, though, is differentiating programs that
have (far) more inputs than outputs. Finding the complete gradient (or Jacobian for a
program with more outputs), requires executing 𝑃fwd once for each input of 𝑃. This
means that differentiating, say, a loss function 𝑙 : R106 ↦→ R would require a million
invocations of 𝑃fwd.

Fortunately, there’s a better way—as the name forward mode might suggest, there
is a corresponding reverse mode which computes the derivative of a program in reverse
program order. With reverse mode AD, the complete gradient (or Jacobian) requires
executing the reverse mode program 𝑃rev once for each output. This means that differ-
entiating 𝑙 would only require a single execution of 𝑃rev—assuming 𝑃rev isn’t a million
times slower than 𝑃fwd

2: that’s a lot better!
2It isn’t and, optimally, 𝑃rev’s runtime is bound by a small constant factor times the runtime of 𝑃. [39]

12 CHAPTER 1. INTRODUCTION

However, the “reverse” in reverse mode also makes it much more challenging be-
cause the derivative computations have reversed dependencies from the original pro-
gram. This mandates either executing the original program to first save all variables
on a so-called “tape” (since the derivative computations depend on these variables)
or recalculating the variables during the derivative computation (or using a strategic
mix of the two). Designing effective data structures and access patterns to efficiently
read and write from the tape and also deciding when to store vs. recompute values
is challenging [70, 8, 77, 39, 104]. This is made only more difficult in parallel comput-
ing contexts, which usually target accelerators with constrained execution models, like
graphics processing units (GPUs).

In Chapter 3, I introduce a technique for efficient reverse mode AD within a nested-
parallel framework that’s based on a calculus of parallel combinators. Since handling
a tape efficiently in a nested-parallel context is challenging, this approach utilizes re-
computation in lieu of a tape. The transformation is articulated through parallel-
combinator-specific rewrite rules. These rules are defined at a high-level—a benefit
inherent to the combinator calculus—which facilitates straightforward arguments for
their efficiency and correctness.

I also present an implementation of this technique in the Futhark compiler. The
implementation is evaluated on a comprehensive suite of benchmarks, demonstrating
competitive performance when compared against other state-of-the-art solutions.

1.4 Rank Polymorphism
In mathematics, notation is often overloaded, abused, or under-specified (and every-
thing in between). This isn’t necessarily problematic as the context in which the notation
appears typically provides enough information to disambiguate it. A common example
is using the same operator for arguments of different ranks. For instance, the+ operator
is used for standard scalar addition:

1 + 2,
but also for matrix addition [

1 2
3 4

]
+
[
5 6
7 8

]
.

This flexibility (at the cost of potential ambiguity) is also enjoyed in some program-
ming languages. These languages support mathematical syntax that is overloaded or
implicitly coerced to suit the application and can bridge the gap between mathemat-
ical concepts and their computational implementation by allowing similar notational
conventions. This alignment makes programs easier to write, read, and understand.

There are two approaches to enable a similar notational flavor as the example above.
The first is ad-hoc polymorphism (also called overloading), where distinct (but related)
functions are grouped under the same name or symbol. In this scheme, scalar addition
and matrix addition are defined separately but are both associated with the + symbol.
The compiler uses static information at the application site to determine which function
to actually use.

Another approach, dubbed rank polymorphism, elides multiple definitions of a func-
tion entirely. Here, there is only a single definition of the + operator, typically scalar
addition.3 When + is applied on non-scalar arguments, it isn’t an error. Instead, the

3Another view is that actually + is itself rank polymorphic. In this view, a reasonable type signature is
+ : ∀𝑆. ∀𝑇. 𝑆int→ 𝑇int→ max(𝑆, 𝑇)int

1.4. RANK POLYMORPHISM 13

compiler (or runtime system) appropriately coerces the function and its argument to
produce a rank-correct application. For example, applying + to two matrices would
require lifting the + function to operate on matrices via a map-like operator; in rank
polymorphic languages, this lifting happens automatically and transparently to the
programmer.

While ad-hoc polymorphism, or some form of overloading, is prevalent in modern
programming languages, rank polymorphism isn’t as common. This is particularly
true in statically typed languages that support parametric polymorphism due to the
inherent challenges involved in statically inferring how to coerce functions when type
variables are involved. Type variables, by definition, can represent any type—how
can a compiler determine how to coerce a function when its only information about
an argument is that it has some generic type 𝛼? This gets at a core challenge in any
language feature that introduces ambiguity: how should the compiler choose? Despite
this, rank polymorphism (in a statically typed context) has a unique value proposition:
it requires simpler machinery compared to ad-hoc polymorphism (which has a whole
class of inference and ambiguity challenges of its own [90]) and doesn’t require defining
separate functions for each possible argument type. It’s also a natural fit for parallel
programming models since it can automatically extend operations to work over higher-
dimensional structures and can abstract away the noise of iteration (and replication)
entirely.

In Chapter 4, I develop a method to augment a statically typed, polymorphic lan-
guage with rank polymorphic function applications. The key idea is to relax the type
constraints generated at function application sites during type checking into so-called
“rank constraints”: the set of rank constraints of a program characterize the legal set
of program coercions—namely function lifting and argument replication—that can be
applied to make the program “rank-correct”. A core difficulty is that any solver for the
rank constraint set must consider all constraints simultaneously. Rank constraints can-
not in general be solved in isolation: how one application is coerced may change how
other applications are coerced. Another challenge is that the constraint set may have
an infinite number of solutions, which is a lot of ambiguity to overcome! Fortunately,
there’s an elegant solution to both problems: the rank constraints can be used to build
an integer linear program whose solution corresponds with the minimum number of
coercions required for a “rank-correct” program. In practice, we found that coercions
generated by this modality were unsurprising and corresponded well with program-
mer intent. Chapter 4 also demonstrates a number of important consistency properties
of the system and also reports on an implementation of the method in the Futhark
compiler.

where 𝑆 and 𝑇 are shape variables. The compiler figures out the specific 𝑆 and 𝑇 for each application and
generates the appropriate code accordingly (but how to do so remains an unsolved problem [105]).

Chapter 2

Background
The work described in this thesis might be best categorized as “applied theory”—

practical work with robust and general theoretical underpinnings. The practical work
takes the shape of extensions and modifications to the Futhark programming language,
so a brief introduction is in order.

The image above is a (curious) interpretation of a particularly fast hedgehog, imag-
ined and drawn by Nikolaj Hey Hinnerskov.

2.1 Futhark
Futhark is a statically-typed, high-level, parallel, functional array language designed for
high-performance computing [44] (hence speedy hedgehog mascot—Gotta Go Fast!).
In Futhark, programs are built using a calculus of parallel second-order array combinators

(SOACs). These include parallel versions of common functional language constructs
likemap, reduce, andscan as well as more specialized combinators, such ashist [46],
which computes (in parallel) generalized histograms. Programs in Futhark are parallel
by construction (as long as they use SOACs), but maintain entirely sequential semantics
that are guaranteed race-free. This results in a programming experience similar to any
other ML-like language—parallel execution is abstracted away from the programmer
as an implementation detail that’s handled by the compiler.

To get a taste of the language, the following code implements matrix multiplication
in Futhark (where 𝑥𝑠𝑠 and 𝑦𝑠𝑠 are the matrices to be multiplied):

map (𝜆𝑥𝑠 →
map (𝜆𝑦𝑠 →

reduce (+) 0 𝑥𝑠 (map (·) 𝑥𝑠 𝑦𝑠)
) (transpose 𝑦𝑠𝑠)) 𝑥𝑠𝑠.

The above code is highly parallel: the two outer maps express parallel loops and the
inner reduce expresses a parallel reduction. While Futhark is hardware-agnostic, par-
allel hardware typically offers only a few levels of parallelism and a finite number of
threads for computation; programs often exhibit both more parallelism and deeper
nested parallelism than the targeted hardware can efficiently support. To address this,
Futhark employs a combination of optimization techniques. The first is flattening [12,
48], which transforms nested parallelism into flat parallelism. Flattening all available
parallelism is inefficient in practice as it can incur significant overhead and negatively
impact data locality. Instead, Futhark applies flattening judiciously, often preserving

14

2.2. LANGUAGE 15

some hierarchical parallelism. The second is fusion, in which nested SOACs are fused
to prevent the allocation of intermediate data structures and improve locality. For ex-
ample, map 𝑔 ◦ map 𝑓 can be fused into map (𝑔 ◦ 𝑓) (which, operationally, flattens the
expression into a single parallel loop). The third is sequentialization, where excess par-
allelism that cannot be efficiently mapped to hardware is identified and sequentialized.
Perhaps counterintuitively, Futhark can be understood as a sequentializing compiler:
Futhark programs often contain excess parallelism—its success in efficiently compiling
programs for parallel hardware is closely tied to its careful selection of what to execute
in parallel and what to sequentialize.

The data-parallel Futhark programming model—built around SOACs—enables an
easy-to-reason-about programming style at a high level of abstraction. This richness
percolates into Futhark’s internal representation, allowing for a compiler writing dis-
cipline in which transformation and optimizations are expressed with a high level of
abstraction.

Futhark belongs to a small niche of strongly- and statically-typed high-performance
languages. It features top-level parametric polymorphism, type inference, and even a
light form of dependent types for tracking sizes [7]. While these features add complexity
compared to languages with more permissive typing disciplines, they also enable a
high-level programming experience in Futhark with more sophisticated static checks.
Additionally, features commonly associated with weaker type systems aren’t necessarily
off-limits: for example, via its uniqueness types [48], Futhark’s type system also enables
in-place updates by tracking array reads/writes at the type level. Rank polymorphism
(see Chapter 4) is another example and is illustrative of Futhark’s type system design
ethos: it should be pragmatically useful to the programmer.

2.2 Language
In this section, we introduce a simple data-parallel language that models the core of
the full Futhark programming language. This language will be used throughout the
rest of the thesis. As with Futhark, the language is an ML-like language based on the
lambda calculus and expresses all parallelism via SOACs. It’s strictly typed and features
parametric polymorphism, higher-order functions, and type inference.

2.2.1 Basics

All functions take a single argument; functions with multiple arguments are curried,
resulting in a sequence of multiple applications. Function application is denoted by
spaces and is left-associative. For example, the imperative 𝑓 (𝑥, 𝑦, 𝑧) is written as 𝑓 𝑥 𝑦 𝑧
and involves three separate function applications; it’s equivalent to ((𝑓 𝑥) 𝑦) 𝑧.

Top-level functions are declared via def and may be polymorphic. For example,

def 𝑖𝑑 (𝑥 : 𝛼) : 𝛼 = 𝑥,

defines the polymorphic identity function.1 Functions (and constants) inside top-level
bodies are declared using let 𝑥 = 𝑒 in 𝑏 and are monomorphic.2 let-expressions

1Similarly to Haskell’s type signatures, type annotations for the arguments and return type aren’t required
and are placed by convention/as documentation.

2Forgoing generalization of let-bindings in top-level bodies turns out to not affect expressivity and
considerably simplifies type inference. [116]

16 CHAPTER 2. BACKGROUND

consist of a series of bindings—which we also call statements—followed by a sequence
of one or more returns which follow the in keyword. For example,

let 𝑎 = 5
let 𝑏 = 𝑎 · 𝑎
in 𝑏,

evaluates to 25 (and is equivalent to let 𝑎 = 5 in (let 𝑏 = 𝑎 · 𝑎 in 𝑏)).
The language uses a list representation for arrays. Multidimensional arrays are

represented as lists-of-lists. For example, the matrix[
1 2
3 4

]
,

may be represented as the list [[1, 2], [3, 4]].
The language does not support recursion. However, it features a sequential loop-

construct that models the same semantics of a tail-recursive function:

loop 𝑥 = 𝑥0 for 𝑖 < 𝑛 do 𝑒.

Semantically, the loop is initialized by binding 𝑥0 to 𝑥 and 𝑖 to 0. Each iteration of the
loop increments 𝑖 and executes 𝑒, binding the result of the expression to 𝑥, which is
used on the subsequent iteration. The loop terminates after 𝑛 iterations and returns the
final evaluation of 𝑒 as its result. The language also supports while-loops:

loop 𝑥 = 𝑥0 while 𝑐 do 𝑒 ,

which work as you’d expect—initially setting 𝑥 = 𝑥0 and then evaluating 𝑒 and binding
𝑥 to the result until the condition 𝑐 evaluates to false.

The language supports a functional flavor of in-place updates based on uniqueness
types [47]. Values are written in-place using the with syntax:

let 𝑥𝑠′ = 𝑥𝑠 with [𝑖] ← 𝑥.

The above has the semantics that 𝑥𝑠′ is a copy of 𝑥𝑠 in which the element at index
𝑖 is updated to 𝑥, but also provides the operational guarantee that the update will
be realized in place. The statement let 𝑥𝑠′[𝑖] = 𝑥 is syntactic sugar for the above;
sometimes it will be written let 𝑥𝑠[𝑖] = 𝑥 (i.e., using the same name 𝑥𝑠 for the updated
array); in this case 𝑥𝑠 should be understood to be a new variable that shadows the old
𝑥𝑠. In a similar vein, statements of the form let 𝑥 += 𝑎 and let 𝑥𝑠[𝑖] += 𝑎 are also
allowed and are sugar for let 𝑥 = 𝑥 + 𝑎 and let 𝑥𝑠 = 𝑥𝑠 with [𝑖] ← 𝑥𝑠[𝑖] + 𝑎,
respectively. Note that in the first statement 𝑥 on the left-hand side shadows the 𝑥 on
the right-hand side (and analogously for 𝑥𝑠 in the second statement).

2.2.2 SOACs
In this section, we describe each SOAC in the language.

2.2.2 (a) map

A map applies a function to each element of an array, producing an array of the same
length. Its signature is

map : (𝑓 : 𝛼→ 𝛽) → (𝑎𝑠 : []𝛼) → []𝛽,

2.2. LANGUAGE 17

and is semantically defined as

map 𝑓 [𝑎0 , 𝑎1 , . . . , 𝑎𝑛−1] ≡ [𝑓 𝑎0 , 𝑓 𝑎1 , . . . , 𝑓 𝑎𝑛−1].
which is equivalent to the imperative parallel loop

forall 𝑖 = 0 . . . 𝑛 - 1
𝑎𝑠[𝑖] = 𝑓 (𝑎𝑠[𝑖]) ,

where 𝑎𝑠 = [𝑎0 , 𝑎1 , . . . , 𝑎𝑛−1].
For simplicity, we allow SOACs to be called with 𝑘-ary functions wherein the SOAC

is applied to 𝑘 equal-length arrays. For example,

map 𝑔 𝑎𝑠 𝑏𝑠 ≡ [𝑔 𝑎0 𝑏0 , 𝑔 𝑎1 𝑏1 , . . . , 𝑔 𝑎𝑛−1 𝑏𝑛−1],
where 𝑎𝑠 = [𝑎0 , 𝑎1 , . . . , 𝑎𝑛−1] and 𝑏𝑠 = [𝑏0 , 𝑏1 , . . . , 𝑏𝑛−1].

2.2.2 (b) reduce

The reduce combinator combines all elements of an array with a binary associative
operator ⊙. Its type signature is

reduce : (⊙ : 𝛼→ 𝛼→ 𝛼) → (𝑒⊙ : 𝛼) → (𝑎𝑠 : []𝛼) → 𝛼,

and is semantically defined as

reduce ⊙ 𝑒⊙ [𝑎0 , 𝑎1 , . . . , 𝑎𝑛−1] ≡ 𝑒⊙ ⊙ 𝑎0 ⊙ 𝑎1 ⊙ · · · ⊙ 𝑎𝑛−1.

The 𝑒⊙ argument is called the neutral element and is—as the name suggests—the identity
of the ⊙ operator. That is, for all 𝑎 : 𝛼, 𝑎 ⊙ 𝑒⊙ = 𝑒⊙ ⊙ 𝑎 = 𝑎.

2.2.2 (c) scan

The scan combinator returns a reduce (with respect to a given binary associative
operator ⊙) of every non-empty prefix of a list. Its type signature is

scan : (⊙ : 𝛼→ 𝛼→ 𝛼) → (𝑒⊙ : 𝛼) → (𝑎𝑠 : []𝛼) → []𝛼,

and is semantically defined as

scan ⊙ 𝑒⊙ [𝑎0 , 𝑎1 , . . . , 𝑎𝑛−1] ≡ [𝑒⊙ ⊙ 𝑎0 , 𝑒⊙ ⊙ 𝑎0 ⊙ 𝑎1 , . . . , 𝑒⊙ ⊙ 𝑎0 ⊙ 𝑎1 ⊙ · · · ⊙ 𝑎𝑛−1],
where just like for reduce, 𝑒⊙ is the neutral element of ⊙.

2.2.2 (d) hist

The hist combinator is a generalized histogram computation [46]. Its type signature
is

hist : (⊙ : 𝛼→ 𝛼→ 𝛼) → (𝑒⊙ : 𝛼) → (𝑖𝑠 : [𝑛]int) → (𝑎𝑠 : [𝑛]𝛼) → [𝑚]𝛼,

where 𝑖𝑠 is an array of indices (bins) that specifies where each value of 𝑎𝑠 should
be placed; 𝑖𝑠 and 𝑎𝑠 must be the same length and together constitute an index-value
pairing. The⊙ operator must be associative and commutative; 𝑒⊙ is its identity element.
The number of bins is typically (much) smaller than the number of index-value pairs.
Bins are initialized with 𝑒⊙. The expression hist ⊙ 𝑒⊙ 𝑖𝑠 𝑎𝑠 has the same semantics as

loop 𝑥𝑠 = replicate 𝑚 𝑒⊙ for 𝑖 = 0 . . . 𝑛 - 1 do
𝑥𝑠 with [𝑖𝑠[𝑖]] = 𝑥𝑠[𝑖𝑠[𝑖]] ⊙ 𝑎𝑠[𝑖] ,

where 𝑚 is the number of bins and 𝑛 is the length of 𝑖𝑠 and 𝑎𝑠.

18 CHAPTER 2. BACKGROUND

2.2.2 (e) scatter

The scatter combinator updates an array in-place according to its arguments. Its
type signature is

scatter : (𝑥𝑠 : []𝛼) → (𝑖𝑠 : []int) → (𝑣𝑠 : []𝛼) → []𝛼,

and it produces an array by updating in-place the array 𝑥𝑠 at the 𝑚 indices in the
duplicate-free 𝑖𝑠 array with corresponding values of 𝑣𝑠. It is semantically equivalent to

loop 𝑥𝑠′ = 𝑥𝑠 for 𝑖 = 0 . . . 𝑚 - 1 do
𝑥𝑠′ with [𝑖𝑠[𝑖]] = 𝑣𝑠[𝑖] .

Chapter 3

Parallel Automatic
Differentiation
This chapter is an adaptation of the following publication:

Robert Schenck, Ola Rønning, Troels Henriksen, and Cosmin E. Oancea. “AD for
an Array Language with Nested Parallelism”. In: Proceedings of the International

Conference on High Performance Computing, Networking, Storage and Analysis. SC ’22.
Dallas, Texas: IEEE Press, 2022. isbn: 9784665454445

The image above is of Carl Gustav Jacob Jacobi, the namesake of the Jacobian matrix.

3.1 Introduction
Automatic differentiation (AD) is a practical way to compute derivatives of functions
that are expressed as programs. AD of sequential code is implemented in tools such
as Tapenade [4], ADOL-C [38], and Stalingrad [87]. Modern deep learning is built
on array programming frameworks such as Tensorflow [1], PyTorch [86], and JAX [17]
which provide implicitly parallel bulk operations that support AD.

A largely unsolved challenge is supporting AD for high-level parallel languages [47,
84, 114] that permit arbitrary nesting of sequential and parallel constructs. Such solu-
tions may in principle act as a catalyst for prototyping and training of more advanced
machine learning (ML) models.

ML often involves minimizing a cost function, a procedure which generally involves
computing its derivative. Cost functions in ML workloads typically have far more
inputs than outputs; the reverse mode of AD is the most efficient in such cases [8] but
is challenging to implement because intermediate program values are required by the
differentiated code. The program must first run a forward sweep (also known as a primal
trace) that stores intermediate program states on the tape. The tape is read from in the
return sweep, which executes the program in reverse to compute the derivative.

A significant amount of work has studied how to elegantly model reverse mode AD
as a compiler transformation and how to hide the tape under powerful programming
abstractions such as (dynamic) closures [87] and delimited continuations [118]. These
abstractions are not suited for efficient parallel execution on many core hardware such
as GPUs.

This work is, to our knowledge, the first to demonstrate an efficient GPU implemen-
tation of reverse mode AD as a compiler transformation on a data-parallel language

19

20 CHAPTER 3. PARALLEL AUTOMATIC DIFFERENTIATION

that supports nested parallelism by means of higher-order array combinators such as
map, reduce, scan, hist, and scatter.

Most reverse mode AD systems save all variables on the tape by default and support
checkpointing annotations as a memory footprint optimization. However, in a nested-
parallel context, the tape may give raise to complex, irregular data structures which
are passed across deep nests and are challenging to implement efficiently in regard to
optimizing spatial and temporal locality. Our approach exploits the fact that applying
reverse mode AD to a straight line of side effect-free code does not require any tape
because all intermediate values remain available [8]. We expand this idea to drive the
code transformation across lexical scopes by requiring that whenever the return sweep
enters a new scope 𝑠, it first redundantly re-executes the forward sweep of 𝑠 in order to
bring all the needed variables into scope.

Our technique preserves work-span asymptotics because the recomputation over-
head is at worst proportional to the depth of the deepest nest of scopes, which is
constant for a nonrecursive program. Moreover, perfectly nested scopes (other than
loops) are guaranteed to not introduce re-execution, hence the overhead can be mini-
mized by classic compiler transformations such as flattening nested parallelism [49] and
polyhedral-like optimizations [15]. Since we forgo passing a tape across scopes, scalars
are efficiently accessed from registers rather than global memory, and the code result-
ing from the AD transformation fully benefits from the existent compiler optimization
repertoire.1

This recomputation technique is the glue that binds scopes together; the other
components of our technique are high-level rewrite rules for differentiating parallel
combinators (SOACs). These rules are derived using the main rewrite rule of the reverse
mode transformation (see Figure 3.3) along with reasoning that combines imperative
(e.g., dependence analysis and loop distribution) and functional thinking (e.g., rewrite
rules and recurrences as scans). In particular, the simplest parallel operator, map, is
the most difficult one to differentiate because its purely functional semantics allow free
variables to be freely read inside it; reverse mode AD replaces reads with accumulations
(to the corresponding adjoint variable), which are not representable as a combination
of classical data-parallel constructs. We report safe support for accumulations inside
maps by introducing accumulators, which may can be thought of as a read-only view
with an array. We also introduce optimizations to transform accumulators into more
specialized constructs (such as reductions), which are further optimized for locality and
may yield speedups close to one order of magnitude.

Our overall contribution is an end-to-end AD technique that supports nested parallel
combinators as well as nesting of forward and reverse mode. We also report on an
implementation of the technique as a compiler pass for the Futhark programming
language. Our specific contributions are:

• Redundant Execution: A redundant execution technique for reverse mode AD
that eliminates the need for tape and does not introduce re-execution for perfectly
nested scopes other than loops.

• Rewrite Rules: A set of rewrite rules for differentiating higher-order parallel
combinators, including in the presence of free variables.

1Our approach is not “AD-efficient” because there is no constant bound for the scope depth that programs
may have. We view this more as a tradeoff rather than a weakness because tape-based systems may incur
order-of-magnitude overheads (due to inefficient utilization of locality) which are higher than the depth of
most programs.

3.2. PRELIMINARIES 21

• Optimizations: A collection of optimizations that rewrite common cases of accu-
mulators to reductions, which benefit from specialized code generation.

• Implementation: We report on an implementation of our reverse mode AD tech-
nique in the Futhark compiler.

• Evaluation: An experimental evaluation of the implementation that demonstrates
sequential and GPU performance competitive with Tapenade [4], Enzyme [76],
PyTorch [86], and JAX [17].

3.2 Preliminaries

3.2.1 Forward mode

(a) (b) (c)
def 𝑃 𝑥0 𝑥1 =

let 𝑣0 = sin 𝑥0
let 𝑣1 = 𝑥1 · 𝑣0
let 𝑣2 = 𝑣0 · 𝑣1
let 𝑦0 = 𝑣1 + 𝑣2
let 𝑦1 = cos 𝑣2
in [𝑦0 , 𝑦1]

def 𝑃fwd 𝑥0 𝑥1 ¤𝑥0 ¤𝑥1 =

let 𝑣0 = sin 𝑥0
let ¤𝑣0 = cos 𝑥0 · ¤𝑥0
let 𝑣1 = 𝑥1 · 𝑣0
let ¤𝑣1 = 𝑣0 · ¤𝑥1 + 𝑥1 · ¤𝑣0
let 𝑣2 = 𝑣0 · 𝑣1
let ¤𝑣2 = 𝑣1 · ¤𝑣0 + 𝑣0 · ¤𝑣1
let 𝑦0 = 𝑣1 + 𝑣2
let ¤𝑦0 = ¤𝑣1 + ¤𝑣2
let 𝑦1 = cos 𝑣2
let ¤𝑦1 = − sin 𝑣2 · ¤𝑣2
in ([𝑦0 , 𝑦1], [¤𝑦0 , ¤𝑦1])

def 𝑃rev 𝑥0 𝑥1 𝑦0 𝑦1 =

let 𝑣0 = sin 𝑥0
let 𝑣1 = 𝑥1 · 𝑣0
let 𝑣2 = 𝑣0 · 𝑣1
let 𝑦0 = 𝑣1 + 𝑣2
let 𝑦1 = cos 𝑣2
let 𝑣2 += − sin 𝑣2 · 𝑦1
let 𝑣1 += 𝑦0
let 𝑣2 += 𝑦0
let 𝑣0 += 𝑣1 · 𝑣2
let 𝑣1 += 𝑣0 · 𝑣2
let 𝑥1 += 𝑣0 · 𝑣1
let 𝑣0 += 𝑥1 · 𝑣1
let 𝑥0 += cos 𝑥0 · 𝑣0
in ([𝑦0 , 𝑦1], [𝑥0 , 𝑥1])

Figure 3.1: (a) a program 𝑃, (b) the forward mode AD transformation of 𝑃 with augmentations
to 𝑃 highlighted in blue , (c) the reverse mode AD transformation of 𝑃 with augmentations
highlighted in red .

In AD, we seek to answer a basic question: how do changes to the inputs of a
program affect its outputs? In forward mode AD this question is answered by computing
the tangents of programs variables. The tangent of a program variable 𝑣𝑖 measures how
𝑣𝑖 changes as the program’s input changes and is defined as

¤𝑣𝑖 =
𝑛−1∑
𝑗=0

𝜕𝑣𝑖
𝜕𝑥 𝑗

, (3.1)

where 𝑥0 , . . . , 𝑥𝑛−1 are the 𝑛 input variables of the program.
As an example, consider variable 𝑣2 from program 𝑃 in Figure 3.1 (a): ¤𝑣2 measures

how 𝑣2 changes as the inputs 𝑥0 and 𝑥1 change. Since 𝑣2 = 𝑣0 · 𝑣1, changes to 𝑥0 and 𝑥1
affect 𝑣2 indirectly via 𝑣0 and 𝑣1. The chain rule of calculus says that we can express ¤𝑣2

22 CHAPTER 3. PARALLEL AUTOMATIC DIFFERENTIATION

in terms of ¤𝑣0 and ¤𝑣1, scaled by the sensitivity of 𝑣2 to 𝑣0 and 𝑣2 to 𝑣1, respectively:

¤𝑣2 =
𝜕𝑣2
𝜕𝑣0
· ¤𝑣0 +

𝜕𝑣2
𝜕𝑣1
· ¤𝑣1 = 𝑣1 · ¤𝑣0 + 𝑣0 · ¤𝑣1.

Computing the tangent of 𝑣2 is now reduced to computing the tangents of 𝑣0 and 𝑣1. To
compute ¤𝑦0 and ¤𝑦1—the answer to our original question of how the outputs of a program
change with its inputs—we follow the same procedure. Because every non-output
program variable must have at least one output which (indirectly or directly) depends
on it (otherwise it’s dead code and can be eliminated), this amounts to computing the
tangent of all intermediate variables in program order. The forward mode rewrite rule for
let-statements in Figure 3.2 encapsulates this program transformation:

let 𝑣 = 𝑓 (𝑢0 , 𝑢1 , . . . , 𝑢𝑛−1)

subsequent statements

prior statements

let 𝑣 = 𝑓 (𝑢0 , 𝑢1 , . . . , 𝑢𝑛−1)
let ¤𝑣 =

𝜕 𝑓
𝜕𝑢0
· ¤𝑢0 + 𝜕 𝑓

𝜕𝑢1
· ¤𝑢1 + · · · + 𝜕 𝑓

𝜕𝑢𝑛−1
· ¤𝑢𝑛−1

subsequent statements interleaved with tangents

prior statements interleaved with tangents

Figure 3.2: The forward mode rewrite rule for let-statements.

The forward mode rule preserves the original statement let 𝑣 = 𝑓 (𝑢0 , 𝑢1 , . . . , 𝑢𝑛−1)
because the derivatives appearing in tangent expressions may depend on variables in
the original program.

Application of the forward mode rewrite rule to program 𝑃 in Figure 3.1 (a) yields
the body of the differentiated program 𝑃fwd, shown in Figure 3.1 (b). For example,
applying the forward mode rewrite rule to the statement let 𝑣2 = 𝑣0 · 𝑣1 in 𝑃 yields
the statements

let 𝑣2 = 𝑣0 · 𝑣1

let ¤𝑣2 = 𝑣1 · ¤𝑣0 + 𝑣0 · ¤𝑣1 ,

in 𝑃fwd. Notice that the inputs of 𝑃fwd are also augmented with the tangents of the
input variables; each invocation of 𝑃fwd computes the derivative of 𝑃 with respect to a
particular direction as defined by these tangents. For example, to find the derivative
with respect to the 𝑖-th input, we set ¤𝑥𝑖 = 1 and all other input tangents to 0 (which
defines the directional of the derivative to be along 𝑥𝑖). This has the consequence that,
if a program 𝑄 has 𝑛 inputs, 𝑛 executions of 𝑄’s forward mode AD transformation are
required to yield the derivative with respect to each input, i.e., the full Jacobian matrix
J. For program 𝑃, which has two inputs, the Jacobian is computed via two invocations
of 𝑃fwd:

def J 𝑥0 𝑥1 = transpose [(𝑃fwd 𝑥0 𝑥1 1 0).1, (𝑃fwd 𝑥0 𝑥1 0 1).1],

where 𝑒.𝑛 projects out the 𝑛-th component of tuple 𝑒. Since each invocation of 𝑃fwd
yields one column of the Jacobian matrix, forward mode AD actually computes a so-
called Jacobian-vector product or jvp, i.e.:

𝑃fwd 𝑥0 𝑥1 ¤𝑥0 ¤𝑥1 ≡ matvec (J 𝑥0 𝑥1) (transpose [¤𝑥0 , ¤𝑥1]),

3.2. PRELIMINARIES 23

where matvec is matrix-vector multiplication. Additionally, notice that the output
of Figure 3.1 (b) includes both the original output of the program (a.k.a. the primal

outputs) and the tangents. Often, the programmer needs both values (e.g., in gradient
descent) and it’s more efficient to compute them in conjunction rather than computing
the primal value redundantly in a separate evaluation.

3.2.2 Reverse mode
Forward mode AD computes how a program’s outputs are affected by its inputs from
the top down: the output tangents are computed via intermediate program tangents
(which themselves are computed via tangents of variables appearing even earlier in
the original program) as dictated by Figure 3.2. In contrast, reverse mode AD computes
how a program’s outputs are affected by its inputs from the bottom-up. Whereas the
quantity of interest in forward mode AD are the program variables’ tangents, in reverse
mode AD the corresponding quantity is each variable’s adjoint, which quantifies its
sensitivity to the program’s output. The adjoint of a program variable 𝑣𝑖 is written 𝑣𝑖
and is defined as

𝑣𝑖 =

𝑚−1∑
𝑗=0

𝜕𝑦 𝑗

𝜕𝑣𝑖
, (3.2)

where 𝑦0 , . . . , 𝑦𝑚−1 are the 𝑚 outputs of the program.
In Figure 3.1 (a), notice that 𝑦0 depends on 𝑣0 indirectly through its dependence on

𝑣1 and 𝑣2; the chain rule says that 𝑣0 is simply the addition of 𝑣1 and 𝑣2, each scaled by
the sensitivity of 𝑣1 to 𝑣0 and 𝑣2 to 𝑣0, respectively:

𝑣0 =

𝑚−1∑
𝑗=0

𝜕𝑦 𝑗

𝜕𝑣0
=

𝑚−1∑
𝑗=0

𝜕𝑦 𝑗

𝜕𝑣1
· 𝜕𝑣1
𝜕𝑣0
+

𝜕𝑦 𝑗

𝜕𝑣2
· 𝜕𝑣2
𝜕𝑣0

=
𝜕𝑣1
𝜕𝑣0
· 𝑣1 +

𝜕𝑣2
𝜕𝑣0
· 𝑣2.

Notice that the adjoints of variables that appear earlier in the program depend on the
adjoints that appear later in the program; computing adjoints is inherently bottom-up,
and in reverse mode AD the adjoint of each variable is determined in reverse program
order. Since adjoint variables have the reverse dependencies of the original program
variables, this necessitates that the original program (a.k.a., the primal program) must
first be executed (to bring all variables into scope as the adjoints may depend on them)
before any adjoints can be computed. A single variable may be used on the right-hand
side of multiple statements, meaning that their adjoints must in general accumulate
contributions throughout the program since each usage of a variable contributes to its
adjoint. All of this is captured in the reverse mode rewrite rule in Figure 3.3.

Application of the reverse mode rewrite rule on 𝑃 in Figure 3.1 (a) yields the reverse
mode differentiated program 𝑃rev, shown in Figure 3.1 (c). As an example, applying the
reverse mode rewrite rule to the statement let 𝑣2 = 𝑣0 · 𝑣1 in 𝑃 yields the lines

let 𝑣2 = 𝑣0 · 𝑣1
...

let 𝑣0 += 𝑣1 · 𝑣2

let 𝑣1 += 𝑣0 · 𝑣2 ,

in 𝑃rev. Notice the inputs of 𝑃rev are augmented with the adjoints of the outputs; in
analogy to forward mode AD—where the input tangents determine the direction of the

24 CHAPTER 3. PARALLEL AUTOMATIC DIFFERENTIATION

let 𝑣 = 𝑓 (𝑢0 , 𝑢1 , . . . , 𝑢𝑛−1)

subsequent statements

adjoint contributions of
subsequent statements

prior statements

let 𝑢0 += 𝜕 𝑓
𝜕𝑢0
· 𝑣

let 𝑢1 += 𝜕 𝑓
𝜕𝑢1
· 𝑣

let 𝑢𝑛−1 += 𝜕 𝑓
𝜕𝑢𝑛−1

· 𝑣
adjoint contributions of
prior statements

let 𝑣 = 𝑓 (𝑢0 , 𝑢1 , . . . , 𝑢𝑛−1)

subsequent statements

prior statements

Figure 3.3: The reverse mode rewrite rule for let-statements. The assignment 𝑢𝑖 += 𝜕 𝑓/𝜕𝑢𝑖 · 𝑣
is syntactic sugar for 𝑢𝑖 = 𝑢𝑖 + 𝜕 𝑓/𝜕𝑢𝑖 · 𝑣 where the 𝑢𝑖 on the right-hand side is shadowed by
the syntactically identical but distinct 𝑢𝑖 on the left-hand side. All adjoints that have not been
assigned to yet in the program are defined to be zero: if 𝑢𝑖 += 𝜕 𝑓/𝜕𝑢𝑖 · 𝑣 is the first contribution
to 𝑢𝑖 , then the statement is equivalent to 𝑢𝑖 = 𝜕 𝑓/𝜕𝑢𝑖 · 𝑣.

derivative—these determine the direction that the outputs change in affecting changes
on the inputs. To find the derivative with respect to the 𝑖-th output, we set 𝑦 𝑖 = 1 and
all other output adjoints to 0; the Jacobian matrix of 𝑃 is computed by the program

def J 𝑥0 𝑥1 = [(𝑃rev 𝑥0 𝑥1 1 0).1, (𝑃rev 𝑥0 𝑥1 0 1).1],

requiring two invocations of 𝑃rev because 𝑃 has two outputs.
Each invocation of 𝑃rev yields one row of the Jacobian matrix J and corresponds to

the vector-Jacobian product or vjp. That is,

𝑃rev 𝑥0 𝑥1 𝑦0 𝑦1 ≡ vecmat [𝑦0 , 𝑦1] (J 𝑥0 𝑥1),

where vecmat is vector-matrix multiplication.
A program 𝑄 with 𝑛 inputs and 𝑚 outputs requires 𝑚 evaluations of the reverse

mode differentiated program, 𝑄rev, to yield the adjoint of all 𝑛 inputs. This means that
if 𝑛 < 𝑚, fewer evaluations of 𝑄rev are required to yield the full Jacobian than of the
forward mode differentiated program, 𝑄fwd. In many applications, 𝑛 ≪ 𝑚 (e.g., scalar-
valued functions have 𝑚 = 1); in these applications the reverse mode of AD is vastly
more efficient than the forward mode as yielding the full Jacobian will only require a
single execution of 𝑄rev (but 𝑛 executions of 𝑄fwd).

3.2.3 AD Interface

The main interface for AD is via two higher-order functions, jvp and vjp, which
correspond to forward and reverse mode AD, respectively. The types of jvp and vjp

3.2. PRELIMINARIES 25

are

jvp : (𝑓 : 𝛼→ 𝛽) → (𝑥 : 𝛼) → (𝑑𝑥 : 𝛼) → 𝛽,

vjp : (𝑓 : 𝛼→ 𝛽) → (𝑥 : 𝛼) → (𝑑𝑦 : 𝛽) → 𝛼,

respectively. Each transforms a function 𝑓 : 𝛼 → 𝛽 into its derivative (if it exists) at
𝑥 : 𝛼. The additional arguments 𝑑𝑥 : 𝛼 and 𝑑𝑦 : 𝛽 for jvp and vjp correspond to the
input tangents and output adjoints, respectively. That is, if the input 𝑥 to 𝑓 is perturbed
by 𝑑𝑥, jvp reports how much the output changes, which is why it returns something
of type 𝛽. On the other hand, vjp answers how much 𝑥 must change to observe an
output difference of 𝑑𝑦, returning something of type 𝛼.

We also expose the functions jvp2 and vjp2, with types

jvp2 : (𝑓 : 𝛼→ 𝛽) → (𝑥 : 𝛼) → (𝑑𝑥 : 𝛼) → (𝛽, 𝛽),
vjp2 : (𝑓 : 𝛼→ 𝛽) → (𝑥 : 𝛼) → (𝑑𝑦 : 𝛽) → (𝛽, 𝛼),

which are semantically defined as jvp2 𝑓 𝑥 𝑑𝑥 ≡ (𝑓 𝑥, jvp 𝑓 𝑥 𝑑𝑥) and vjp2 𝑓 𝑥 𝑑𝑦 ≡
(𝑓 𝑥, vjp 𝑓 𝑥 𝑑𝑦), respectively. The utility of jvp2 and vjp2 lies in the fact that the
primal computation (i.e., 𝑓 𝑥) has many computations in common with the derivative
computations (since derivative computations in general depend on primal values). In
general, it’s more efficient to compute the derivative of 𝑓 in concert with 𝑓 𝑥—see
Section 3.2.5 for an example.

Forward mode (jvp) is implemented in close analog to the dual number formulation
described in [8] and won’t be discussed further. Reverse mode (vjp) is more complex,
requiring computation of adjoints in reverse program order and accumulations into
adjoint variables (which requires special consideration to do efficiently), and thus,
reverse mode is the focus of the remainder of this chapter.

3.2.4 Source Language

We perform our transformation on the data-parallel language introduced in Section 2.2.
While the source language supports high-level features like higher-order functions and
polymorphism, in this chapter we consider only a simplified monomorphic subset of
the language with a number of restrictions—this models the approach in the actual
Futhark compiler, where its high-level features are compiled away using a variety of
techniques [31, 51] before we perform AD. Further, a significant battery of standard
optimizations (including common subexpression elimination, constant folding, and
aggressive inlining) is also applied prior to AD.

The only remaining second-order functions are the SOACs. Lambdas (i.e., unnamed
functions) can only appear syntactically in SOACs and vjp/jvp, and are not values.
As such we do not suffer from “perturbation confusion” [68]. The language is written
in A-normal form [95] (ANF): all subexpressions are variable names or constants except
for the body expression of loops, if-then-else-expressions and let-expressions.
We re-emphasize from Section 2.2 that the language is purely functional: re-definitions
of the same variable should be understood as a notational convenience for variable
shadowing: let 𝑥 += 𝑦 is syntactic sugar for let 𝑥 = 𝑥 + 𝑦, where the 𝑥 on the
right-hand side is shadowed by the one on the left.

26 CHAPTER 3. PARALLEL AUTOMATIC DIFFERENTIATION

def cost points centers =
sum (map (𝜆p → min (map (dist2 p) centers))

points)

def kmeans (k: i64) (n: i64) (d: i64) (b: i64)
(points: [n][d]f32) =

loop (centers: [k][d]f32 = . . .) for i < b do
let (cost’, cost’’) =

jvp2 (𝜆x → vjp (cost points) x 1) centers
(replicate k (replicate d 1))

let dx = map (map (/)) cost’ cost’’
in map (map (-)) centers dx

Figure 3.4: Applying reverse (vjp) and forward (jvp2) mode AD to solve 𝑘-means. Recall that
jvp2 𝑓 𝑥 𝑑𝑥 returns both the primal value and the derivative (jvp only returns the derivative);
this is useful because Newton’s method requires both the gradient (cost’) and the diagonal of
the Hessian (cost”). dist2 computes the Euclidean distance.

3.2.5 Example: 𝑘-means
𝑘-means clustering is an optimization problem that partitions 𝑛 points𝑃 in 𝑑-dimensional
space into 𝑘 clusters centroids 𝐶 that minimizes the cost function

𝑓 (𝐶) =
∑
𝑝∈𝑃

min
{
||𝑝 − 𝑐||2 , 𝑐 ∈ 𝐶

}
. (3.3)

𝑓 can be minimized using Newton’s method [16], which iteratively finds the minimizing
cluster locations via the recurrence

𝐶𝑖+1 = 𝐶𝑖 −H(𝑓 (𝐶𝑖))−1∇ 𝑓 (𝐶𝑖),

until convergence, where H(𝑓 (𝐶𝑖)) is the Hessian of 𝑓 and ∇ 𝑓 (𝐶𝑖) is the gradient of 𝑓 .
Since the centroids are independent of each other, H(𝑓 (𝐶𝑖)) is a diagonal matrix and
the above computation can instead be written as

𝐶𝑖+1 = 𝐶𝑖 − ∇ 𝑓 (𝐶𝑖) ⊘ diag(H(𝑓 (𝐶𝑖)),

where ⊘ is element-wise division and diag(H(𝑓 (𝐶𝑖)) is the vector containing the di-
agonal elements of H(𝑓 (𝐶𝑖)).2 This avoids computing the full Hessian as well as its
inverse—an expensive operation if done naively!

Figure 3.4 above shows Futhark code with a function cost which implements the
cost function (Equation (3.3)) along with a function kmeans which minimizes it and
exploits sparsity of the Hessian via the recurrence above (realized by a loop); this
shows how the jvp/vjp interface allows the programmer to exploit sparsity. Note the
nesting of vjp inside jvp2, which allows the gradient to be differentiated to produce
the Hessian.3

2Since the inverse of a diagonal matrix is obtained by replacing each element on the diagonal by its
reciprocal.

3∇ 𝑓 (𝐶𝑖) can be directly computed by vjp; since H(𝑓 (𝐶𝑖)) = J(∇ 𝑓 (𝐶𝑖)), diag(H(𝑓 (𝐶𝑖))) = H(𝑓 (𝐶𝑖)) ·1 is just
a Jacobian-vector product and may be directly computed with a single iteration of jvp on ∇ 𝑓 (𝐶𝑖) (computed
by vjp), where 1 is a vector of all 1s.

3.3. REVERSE MODE AD BY REDUNDANT EXECUTION 27

3.3 Reverse Mode AD by Redundant Execution
This section discusses how the transformation operates across scopes without requiring
an explicit tape (as in traditional reverse mode AD techniques): Section 3.3.1 gives an
example and sketches the overall structure of the analysis, Section 3.3.2 demonstrates
the analysis of loops, and Section 3.3.3 discusses the trade-offs related to redundant
execution.

3.3.1 Transformation Rules Across Scopes

1 let 𝑥 = 𝑎 + 𝑏 1 𝑓 let 𝑥 = 𝑎 + 𝑏
2 let 𝑟𝑒𝑠 = 𝑥 · 𝑐 2 𝑓 let 𝑟𝑒𝑠 = 𝑥 · 𝑐

in 𝑟𝑒𝑠 2𝑟 let 𝑥 = 𝑐 · 𝑟𝑒𝑠
2𝑟 let 𝑐 += 𝑥 · 𝑟𝑒𝑠
1𝑟 let 𝑎 += 𝑥

1𝑟 let 𝑏 += 𝑥

in (𝑎, 𝑏, 𝑐)

𝑠𝑡𝑚 — 𝑠𝑡𝑚𝑠
𝑏𝑜𝑑𝑦

−−−→
𝑠𝑡𝑚𝑠

←−−−
𝑠𝑡𝑚𝑠

←−→
𝑠𝑡𝑚𝑠

fv(𝑏𝑜𝑑𝑦)

Figure 3.5: An example of applying the 𝑣 𝑗𝑝𝑏𝑜𝑑𝑦 rule (see Figure 3.6) to a body: the code on the
left shows the original body and the code on the right shows the resulting differentiated body.
The line numbers 1 𝑓 and 2 𝑓 indicate that the line corresponds to the forward sweep of lines 1
and 2 (of the original program), respectively. 1𝑟 and 2𝑟 indicate that the line is part of the return
sweep corresponding to lines 1 and 2, respectively.

Figure 3.5 illustrates the reverse mode AD transformation on a simple example. The
transformation acts on a body (labeled 𝑏𝑜𝑑𝑦), which consists of a list of statements
(labeled 𝑠𝑡𝑚𝑠) followed by a result (in 𝑟𝑒𝑠), as depicted in the code on the left of
Figure 3.5. The right side of the figure shows the result of the transformation: it
consists of a forward sweep (labeled −−−→𝑠𝑡𝑚𝑠) which is a re-execution of the statements
from the original program to bring into scope any variables which may be needed
in the return sweep, and the reverse sweep itself (labeled ←−−−𝑠𝑡𝑚𝑠) which computes the
new adjoint contributions to each variable, in reverse program order. The forward and
return sweeps together constitute the statements of the differentiated body, which we
label←−→𝑠𝑡𝑚𝑠. Finally, the result of the differentiated body consists of the adjoints of the
free variables in the body, which are returned by fv(𝑏𝑜𝑑𝑦), and consist of 𝑎, 𝑏, and 𝑐.
Only these adjoints can contribute to the adjoints of other program variables: all bound
variables within the body will be out of scope once the body returns.

In the following sections, the reverse mode transformation Vjp is implemented as
a syntax-directed translation [73] where translation rules are defined for each syn-
tactic category of the language. Figure 3.6 shows the primary translation rules for
the Vjp transformation and illustrates the treatment of new scopes.

We elide symbol table bookkeeping and assume that the adjoint 𝑥 of a variable 𝑥
is always available.4 The Vjpbody rule refers to a body of statements (coupled with a
return), which always begins a new scope. The rule first extends the environment
by binding the body result 𝑟𝑒𝑠 to its adjoint 𝑟𝑒𝑠 (not shown); this is safe since the
transformation works backwards, hence the adjoint 𝑟𝑒𝑠 is already available from the

4In practice, either the adjoint is available or it hasn’t had any contributions yet, in which case a statement
can be inserted which initializes the adjoint to a zero element of the appropriate type and shape.

28 CHAPTER 3. PARALLEL AUTOMATIC DIFFERENTIATION

Vjpbody applies to bodies of the form 𝑠𝑡𝑚𝑠 in 𝑟𝑒𝑠:
Vjpbody(𝑟𝑒𝑠, 𝑠𝑡𝑚𝑠 in 𝑟𝑒𝑠) ⇒

←−→
𝑠𝑡𝑚𝑠 in (𝑟𝑒𝑠, fv(𝑠𝑡𝑚𝑠))

where
←−→
𝑠𝑡𝑚𝑠 ← Vjpstms(𝑠𝑡𝑚𝑠)

Vjpstms folds over each statement:
Vjpstms(𝑠𝑡𝑚, 𝑠𝑡𝑚𝑠) ⇒ (

−−−→
𝑠𝑡𝑚𝑠, Vjpstms(𝑠𝑡𝑚𝑠),

←−−−
𝑠𝑡𝑚𝑠)

where (−−−→𝑠𝑡𝑚𝑠, ←−−−𝑠𝑡𝑚𝑠) ← Vjpstm(𝑠𝑡𝑚)

Vjpstm for a scalar multiplication statement:
Vjpstm(let 𝑥 = 𝑎 · 𝑏) ⇒ (

−−−→
𝑠𝑡𝑚𝑠,

←−−−
𝑠𝑡𝑚𝑠)

where
−−−→
𝑠𝑡𝑚𝑠 ← let 𝑥 = 𝑎 · 𝑏
←−−−
𝑠𝑡𝑚𝑠 ← let 𝑎 += 𝑏 · 𝑥

let 𝑏 += 𝑎 · 𝑥

Vjpstm for an array-indexing statement:
Vjpstm(let 𝑦 = 𝑎[𝑖]) ⇒ (let 𝑦 = 𝑎[𝑖], let 𝑦 = upd 𝑖 𝑦 𝑎)

Vjp𝜆 for a lambda function (𝜆𝑥1 . . . 𝑥𝑛 → 𝑠𝑡𝑚𝑠 in 𝑟𝑒𝑠):
Vjp𝜆(𝑟𝑒𝑠, 𝜆𝑥1 . . . 𝑥𝑛 → 𝑠𝑡𝑚𝑠 in 𝑟𝑒𝑠) ⇒ 𝜆𝑥1 . . . 𝑥𝑛 →

←−→
𝑠𝑡𝑚𝑠 in fv(𝑠𝑡𝑚𝑠)

where
←−→
𝑠𝑡𝑚𝑠 in (_, fv(𝑠𝑡𝑚𝑠)) ← Vjpbody(𝑟𝑒𝑠, 𝑠𝑡𝑚𝑠 in 𝑟𝑒𝑠)

Figure 3.6: The Vjp code transformation for several syntactic categories. 𝑥 denotes the adjoint
of 𝑥, fv(𝑏𝑜𝑑𝑦) returns the free variables of 𝑏𝑜𝑑𝑦, −−−→𝑠𝑡𝑚𝑠 and←−−−𝑠𝑡𝑚𝑠 denote the forward and return
sweeps, respectively, generated for 𝑠𝑡𝑚𝑠.

outer scope. The statements of the transformed body (←−→𝑠𝑡𝑚𝑠) are those generated by
Vjpstms, which demonstrates the redundant execution mechanism that eliminates the
need for a separate tape abstraction. Each statement is processed individually by Vjpstm,
which produces a sequence of statements on the forward sweep (−−−→𝑠𝑡𝑚𝑠) that brings into
scope whatever information is necessary to execute the return sweep (←−−−𝑠𝑡𝑚𝑠), which is
always structured in the reverse order of the original statements.

The remainder of the rules in Figure 3.6 show how Vjp works on a selection of
individual statement types and functions. Observe that the operation of Vjp on scalar
multiplications is a direct application of the reverse mode rewrite rule specified in
Figure 3.3.

On array-indexing statements of the formlet 𝑦 = 𝑎[𝑖], the return sweep must update
𝑎[𝑖]with the contribution of 𝑦, which is accomplished in the rule by let 𝑦 = upd 𝑖 𝑦 𝑎.
Semantically, upd 𝑖 𝑣 𝑎 returns a new value equal to 𝑎 but with the value at index
𝑖 changed to be 𝑣 + 𝑎[𝑖]. Operationally, the array 𝑎 is directly modified in-place. To
preserve purely functional semantics, we require that the “old” 𝑎 and its aliases are never
accessed again, similar to (but distinct from—the syntax involves accumulators and will
be explained in-depth in Section 3.4.5) the in-place updates described in Chapter 2
and section 4.3.1.

Finally, the rule Vjp𝜆 transforms an anonymous function; its result is obtained by
calling Vjpbody on the function body. Note that 𝑥1 , . . . , 𝑥𝑛 are free variables in 𝑠𝑡𝑚𝑠, so
their adjoints—if the variables were read in 𝑠𝑡𝑚𝑠—are among fv(𝑠𝑡𝑚𝑠), which returns

3.3. REVERSE MODE AD BY REDUNDANT EXECUTION 29

the adjoints of the free variables in 𝑠𝑡𝑚𝑠.

3.3.2 Reverse Mode Transformation for Loops

(a) Original loop
...

}
𝑠𝑡𝑚𝑠before

let 𝑦′′ =
loop 𝑦 = 𝑦0
for 𝑖 = 0 . . . 𝑚𝑘 - 1 do
...

}
𝑠𝑡𝑚𝑠loop

in 𝑦′

...

}
𝑠𝑡𝑚𝑠after

(c) Strip-mined loop
...

}
𝑠𝑡𝑚𝑠before

let 𝑦′′ =
loop 𝑦1 = 𝑦0
for 𝑖1 = 0 . . . 𝑚 - 1 do
. . .

loop 𝑦𝑘 = 𝑦𝑘−1
for 𝑖𝑘 = 0 . . . 𝑚 - 1 do
let 𝑦 = 𝑦𝑘
let 𝑖 =
𝑖1 · 𝑚𝑘−1 + . . . + 𝑖𝑘
...

}
𝑠𝑡𝑚𝑠loop

in 𝑦′

...

}
𝑠𝑡𝑚𝑠after

(b) Reverse AD of loop
1 ...

} −−−→
𝑠𝑡𝑚𝑠before

2 let 𝑦𝑠0 = scratch 𝑚𝑘 (sizeOf 𝑦0)
3 let (𝑦′′, 𝑦𝑠) =
4 loop (𝑦, 𝑦𝑠) = (𝑦0 , 𝑦𝑠0)
5 for 𝑖 = 0 . . . 𝑚𝑘 - 1 do
6 let 𝑦𝑠[𝑖] = 𝑦
7 ...

}
𝑠𝑡𝑚𝑠loop

8 in (𝑦′, 𝑦𝑠)
9 ...

} −−−→
𝑠𝑡𝑚𝑠after

10 ...

}←−−−
𝑠𝑡𝑚𝑠after

11 let (𝑦′′′, 𝑓 𝑣𝑠loop) =
12 loop (𝑦, 𝑓 𝑣𝑠loop) = (𝑦′′, fv(𝑠𝑡𝑚𝑠loop))
13 for 𝑖 = 𝑚𝑘 - 1 . . . 0 do
14 let 𝑦 = 𝑦𝑠[𝑖]
15 ...

} −−−→
𝑠𝑡𝑚𝑠loop

16 ...

}←−−−
𝑠𝑡𝑚𝑠loop

17 in (𝑦′, 𝑓 𝑣𝑠′loop)
18 let 𝑦0 += 𝑦′′′

19 ...

}←−−−
𝑠𝑡𝑚𝑠before

Figure 3.7: (a) A loop, (b) the result of applying the Vjp transformation, and (c) the result of
strip-mining it into a depth-𝑘 loop nest. In (b), Vjpbody(𝑦, 𝑠𝑡𝑚𝑠loop in 𝑦′) is called to generate
−−−−−−−→
𝑠𝑡𝑚𝑠loop,←−−−−−−−𝑠𝑡𝑚𝑠loop, and 𝑓 𝑣𝑠′loop, as defined in Figure 3.6.

This section illustrates the transformation rule for loops: Figure 3.7 (b) shows the
result of Vjp applied to the loop in Figure 3.7 (a). The forward sweep of the differentiated
loop in Figure 3.7 (b) (lines 2–8) consists of the original loop except that its result
and body are modified to checkpoint into array 𝑦𝑠 the value of 𝑦 at the start of each
iteration; 𝑦𝑠 is also declared as loop variant and initialized to 𝑦𝑠0, which is allocated
(by scratch5) just before the loop statement. Importantly, only the loops of the
current scope are checkpointed; a more deeply nested loop would be re-executed, not
checkpointed.

The return sweep of the loop (lines 11− 18) consists of a loop that iterates backward
from 𝑚𝑘 − 1 down to 0. The loop variant values consist of the adjoint of the primal loop
variant value(s) along with initial adjoints for the free variables in the loop, which are

5scratch 𝑑 𝑠 allocates an array of length 𝑑 consisting of 𝑠-byte elements. sizeOf returns the size of its
argument’s type.

30 CHAPTER 3. PARALLEL AUTOMATIC DIFFERENTIATION

returned by fv(𝑠𝑡𝑚𝑠loop) (line 12). The first statement of the loop (line 14) re-installs the
value of 𝑦 of the current iteration from the checkpoint, so that the forward sweep of the
loop body (−−−→𝑠𝑡𝑚𝑠loop) can be re-executed to bring into scope the variables needed by the
return sweep of the loop body←−−−𝑠𝑡𝑚𝑠loop. The result of the reversed loop body (line 17)
is the adjoint of the original result, 𝑦′, together with the (updated) adjoints of the free
variables used in the loop, 𝑓 𝑣𝑠′loop. These are declared as variant through the loop (line
12) such that the updates of all iterations are recorded. Finally, the statement at line
18 semantically updates the adjoint of the loop initializer 𝑦0 with the result of the loop
𝑦′′′ (+ denotes a vectorized addition that fits 𝑦0’s data type). This is because the first
executed instruction of the source loop sets 𝑦 = 𝑦0 and the adjoint of 𝑦 corresponding
to the first iteration is the same as the adjoint of the loop result since the return sweep
executes backwards.

With our strategy, the original loop is executed twice (lines 7 and 15). Strip-mining
the loop (which has 𝑚𝑘 iterations) into a depth-𝑘 loop nest, as shown in Figure 3.7 (c),
suffers at worst a re-execution overhead factor of 𝑘 + 1 when differentiated; however, it
has a much smaller memory overhead than the original loop as each of the 𝑘 𝑚-iteration
loops checkpoints its own variable, resulting in a memory footprint that is proportional
to 𝑚𝑘 rather than 𝑚𝑘 .6 When 𝑚 is constant, this results in the logarithmic space and
time overhead case of the time-space tradeoff studied by Siskind and Pearlmutter [104].
We exploit the tradeoff in a simple and practical way by allowing the user to annotate
the loops with a constant strip-mining depth, which is applied automatically before
AD.

We conclude by noting that sequential loops are the only construct that require
iteration checkpointing and that, importantly, parallel constructs do not because there
are no dependencies between the inputs of parallel loops and subsequent iterations.

3.3.3 Perfect Nests Do Not Incur Redundant Execution

1 let 𝑎𝑠𝑠 = map (𝜆𝑐 𝑎𝑠 → if 𝑐 then . . . else map (𝜆𝑎 → 𝑎 · 𝑎) 𝑎𝑠) 𝑐𝑠 𝑎𝑠𝑠
2 let 𝑎𝑠𝑠 = map (𝜆𝑐 𝑎𝑠 𝑥𝑠 →
3 let 𝑥𝑠 = if 𝑐 then . . . else map (𝜆𝑎 → 𝑎 · 𝑎) 𝑎𝑠
4 in if 𝑐 then . . .

5 else let 𝑥𝑠′ = map (𝜆𝑎 → 𝑎 · 𝑎) 𝑎𝑠
6 let 𝑎𝑠 = map (𝜆𝑎 𝑥 → let 𝑥 = 𝑎 · 𝑎
7 in 2 · 𝑎 · 𝑥
8) 𝑎𝑠 𝑥𝑠
9 in 𝑎𝑠
10) 𝑎𝑠𝑠 𝑥𝑠𝑠

scope 0
– scope 1

— scope 2
—- scope 3

Figure 3.8: The body of the function generated by applying Vjp to
𝜆𝑎𝑠𝑠 → map(𝜆𝑐 𝑎𝑠 → if 𝑐 then . . . else map (𝜆𝑎 → 𝑎 · 𝑎) 𝑎𝑠) 𝑐𝑠 𝑎𝑠𝑠

Red denotes the re-execution of the forward trace in each (new) scope. Note that all re-

executions are dead code ; this is guaranteed when the original code consists of perfectly nested
scopes.

6The checkpoint of each of the 𝑘 loops stores 𝑚 versions of 𝑦.

3.4. REWRITE RULES FOR PARALLEL CONSTRUCTS 31

Figure 3.8 shows the code generated by applying Vjp to a function whose body consist
of perfectly nested scopes. (The differentiation of map is discussed in Section 3.4.5 and
isn’t necessary to understand this section.) It turns out that the code which constitutes
the re-execution of the forward trace for each of the four scopes7—highlighted in red
in the figure— is dead code . The reason is that perfectly nested scopes (other than
loops) are guaranteed not to introduce recomputation because—by definition—their
bodies consist of one (composed) statement: there are no intermediate variables whose
adjoints will accumulate contributions in the return sweep (since there are no statements
to reference them in the forward trace).8

It follows that overheads can be optimized by well-known transformations that gen-
erate perfect nests [15, 115], rooted in techniques like loop distribution and interchange.
These transformations are also supported by the Futhark compiler [49]. With these
transformations, we typically expect the forward sweep to be executed twice:

1. Once for the outermost scope because programs typically consist of multiple nests
(the user may also require the result of the original program).

2. Once for the innermost scope that typically performs scalar computation, which
is cheap to recompute. In comparison, vectorization or the use of tape would
require such scalars to be retrieved from global memory, which has (an) order(s)
of magnitude higher latency on a GPU.

Note that loops whose variant values are addition-based accumulations also do not
introduce recomputation since the differentiation of addition does not depend upon
primal values.

3.4 Rewrite Rules for Parallel Constructs

This section presents in detail the differentiation rules forreduce,hist,scan,scatter,
and map.

3.4.1 Reduce

Recall from Section 2.2.2 that a reduce combines all elements of an array with a binary
associative operator ⊙: reduce ⊙ 𝑒⊙ [𝑎0 , 𝑎1 , . . . , 𝑎𝑛−1] ≡ 𝑎0 ⊙ 𝑎1 ⊙ · · · ⊙ 𝑎𝑛−1, where
𝑒⊙ is the neutral element of ⊙.9 Now, consider differentiating the statement

let 𝑦 = reduce ⊙ 𝑒⊙ [𝑎0 , 𝑎1 , . . . , 𝑎𝑛−1]. (3.4)

For each 𝑎𝑖 , we can group the terms of the reduce as

𝑎0 ⊙ · · · ⊙ 𝑎𝑖−1︸ ︷︷ ︸
𝑙𝑖

⊙ 𝑎𝑖 ⊙ 𝑎𝑖+1 ⊙ · · · ⊙ 𝑎𝑛−1︸ ︷︷ ︸
𝑟𝑖

.

7The outermost scope (scope 0) is the function’s body, which consists of an outer map whose function’s
body (scope 1) consists of an if, whose else-body (scope 2) consists of an inner map, whose function body
(scope 3) consists of a multiplication.

8Nested loops, however, must be flattened into a single loop because, even if perfectly nested, they may
remain live due to checkpointing.

9We assume that the array being reduced over is non-empty.

32 CHAPTER 3. PARALLEL AUTOMATIC DIFFERENTIATION

We then apply the main rule for reverse mode AD given in Figure 3.3, which results in
the contributions

𝑎𝑖 +=
𝜕(𝑙𝑖 ⊙ 𝑎𝑖 ⊙ 𝑟𝑖)

𝜕𝑎𝑖
𝑦,

where 𝑙𝑖 and 𝑟𝑖 are constants and can be computed by exclusive scans,10 + denotes a
(potentially) vectorized addition that matches 𝑎𝑖 ’s datatype, and 𝑦 is the variable bound
to the result of the reduce (as in Equation (3.4)). The code for the right-hand side can
be generically generated as a function 𝑓 that is parameterized over 𝑎𝑖 , 𝑙𝑖 , and 𝑟𝑖 (the
Vjp𝜆 rule is defined in Figure 3.6):

𝑓 ← Vjp𝜆 (𝑦, 𝜆(𝑙𝑖 , 𝑎𝑖 , 𝑟𝑖) → 𝑙𝑖 ⊙ 𝑎𝑖 ⊙ 𝑟𝑖),

except 𝑓 is modified to not return the adjoints of 𝑙𝑖 and 𝑟𝑖 since they aren’t needed.
Two (exclusive) scans are used to compute the 𝑙𝑖s and 𝑟𝑖s for each 𝑎𝑖 of the array
[𝑎0 , 𝑎1 , . . . , 𝑎𝑛−1]; 𝑓 can then be mapped over the result of the scans to compute the
adjoint contribution to each element of the array being reduced over.

Summing things up, the forward sweep is simply the original reduce statement
shown in Equation (3.4) above. Letting 𝑎𝑠 = [𝑎0 , 𝑎1 , . . . , 𝑎𝑛−1] and assuming for
simplicity that ⊙ has no free variables, the return sweep is

let 𝑙𝑠 = scan𝑒𝑥𝑐 ⊙ 𝑒⊙ 𝑎𝑠
let 𝑟𝑠 = reverse 𝑎𝑠 ⊲ scan𝑒𝑥𝑐 (𝜆𝑥 𝑦 → 𝑦 ⊙ 𝑥) 𝑒⊙ ⊲ reverse
let 𝑎𝑠 += map 𝑓 𝑙𝑠 𝑎𝑠 𝑟𝑠,

where ⊲ is the pipe forward operator which enables composing functions left-to-right, e.g.,
𝑥 ⊲ 𝑓 ⊲ 𝑔 = 𝑔 (𝑓 𝑥).

This translation is AD-efficient, but requires 8 memory accesses per element in
comparison to one in the original reduce.11 Fortunately, standard operators admit
more efficient translations. Specialized rules for addition, min, and max are known [52].
The return sweep for (vectorized) addition adds 𝑦 to each element of 𝑎𝑠. For min/max,
the forward sweep computes the minimal/maximal element 𝑦 together with its first
occurring index 𝑖𝑦 , e.g.,

let (𝑦, 𝑖𝑦) = argmin 𝑎𝑠,
and the return sweep updates only the adjoint of that element:

let 𝑎𝑠[𝑖𝑦] += 𝑦.

When the reduction operator is multiplication, we have

𝑎𝑖 +=
𝜕(𝑙𝑖 ⊙ 𝑎𝑖 ⊙ 𝑟𝑖)

𝜕𝑎𝑖
𝑦 =

𝜕(𝑙𝑖 · 𝑎𝑖 · 𝑟𝑖)
𝜕𝑎𝑖

𝑦 = 𝑙𝑖 · 𝑟𝑖 · 𝑦,

and discriminate three cases:

1. If all of 𝑎𝑠’s elements are nonzero, then 𝑙𝑖 · 𝑟𝑖 = 𝑦/𝑎𝑖 and 𝑦 ≠ 0, hence we update
each element as 𝑎𝑖 += 𝑦/𝑎𝑖 · 𝑦.

2. If exactly one element at index 𝑖0 is zero, then 𝑙𝑖 · 𝑟𝑖 is zero for all other elements
and 𝑎𝑖0 += 𝑙𝑖0 · 𝑟𝑖0 · 𝑦.

3. Otherwise, for all 𝑖, 𝑙𝑖 · 𝑟𝑖 = 0 and 𝑎𝑠 remains unchanged.
10scan𝑒𝑥𝑐 ⊙ 𝑒⊙ [𝑎0 ,𝑎1 ,··· ,𝑎𝑛−1] ≡ [𝑒⊙ , 𝑎0 , 𝑎0 ⊙ 𝑎1 , ..., 𝑎0 ⊙ ··· ⊙ 𝑎𝑛−2].
11Two each for 𝑙𝑠 and 𝑟𝑠 and then four for 𝑎𝑠.

3.4. REWRITE RULES FOR PARALLEL CONSTRUCTS 33

These three cases are enabled by augmenting the forward sweep to compute the product
of non-zero elements as well as the number of zero elements in 𝑎𝑠 (𝑝𝑟𝑜𝑑 and 𝑛𝑧𝑒𝑟𝑜𝑠,
respectively):

let (𝑝𝑟𝑜𝑑, 𝑛𝑧𝑒𝑟𝑜𝑠) =
map (𝜆𝑎 → if 𝑎 == 0 then (1, 1) else (𝑎, 0)) 𝑎𝑠
⊲ reduce (𝜆(𝑝𝑟𝑜𝑑′, 𝑛𝑧𝑒𝑟𝑜𝑠′) (𝑎, 𝑖𝑠𝑍𝑒𝑟𝑜) → (𝑝𝑟𝑜𝑑′ · 𝑎, 𝑛𝑧𝑒𝑟𝑜𝑠′ + 𝑖𝑠𝑍𝑒𝑟𝑜)) (1, 0)

let 𝑦 = if 0 == 𝑛𝑧𝑒𝑟𝑜𝑠 then 𝑝𝑟𝑜𝑑 else 0,

followed by setting the reduced result 𝑦 accordingly. The return sweep computes the
contributions by a parallel map and updates adjoints as discussed previously for case 1
(with adjoint contributions in the other two cases as discussed above).

3.4.2 Histogram
hist generalizes a histogram computation [46] by allowing the values from an array
(𝑎𝑠 below) that fall into the same bin (i.e., an index from 𝑖𝑠) to be reduced with an
arbitrary associative and commutative operator ⊙ with neutral element 𝑒⊙:

hist : (⊙ : 𝛼→ 𝛼→ 𝛼) → (𝑒⊙ : 𝛼) → (𝑖𝑠 : [𝑛]int) → (𝑎𝑠 : [𝑛]𝛼) → [𝑚]𝛼
let ℎ𝑠 = hist ⊙ 𝑒⊙ 𝑖𝑠 𝑎𝑠,

𝑖𝑠 and 𝑎𝑠 must be the same length and together constitute an index-value pairing. (See
Section 2.2.2 for precise semantics and more details.)

Similar reasoning to that used forreduce suggests that two scans need to be applied
to each subset of elements that fall in the same bin in order to compute the 𝑙𝑖 and 𝑟𝑖 terms
for each 𝑖. The contributions to the adjoint 𝑎𝑠 are then computed—as in the reduce
case—by map 𝑓 𝑙𝑠 𝑎𝑠 𝑟𝑠 where 𝑓 is as defined in Section 3.4.1. Assuming a constant
key size, the scans can be implemented with the right asymptotic complexity by radix
sorting 𝑎𝑠 according to the corresponding bins (to ensure elements falling in the same
bin are consecutive) and then by applying irregular segmented scans12 (forwards and in
reverse, in analogy to the rule for reduce) on the result. Taken all together the reverse
sweep looks as follows:

let 𝑓 𝑙𝑎𝑔 = map (𝜆𝑖 → 𝑖 == 0 || 𝑠𝑖𝑠[𝑖] ≠ 𝑠𝑖𝑠[𝑖 − 1]) (iota 𝑛)
let 𝑟 𝑓 𝑙𝑎𝑔 = map (𝜆𝑖 → 𝑖 == 0 || 𝑓 𝑙𝑎𝑔[𝑛 − 1]) (iota 𝑛)
let 𝑙𝑠 = seg_scan𝑒𝑥𝑐 ⊙ 𝑒⊙ 𝑓 𝑙𝑎𝑔 𝑠𝑎𝑠
let 𝑟𝑠 = reverse 𝑠𝑎𝑠 ⊲ seg_scan𝑒𝑥𝑐 (𝜆𝑥 𝑦 → 𝑦 ⊙ 𝑥) 𝑒⊙ ⊲ reverse
let 𝑠𝑎𝑠 += map 𝑓hist 𝑙𝑠 𝑎𝑠 𝑟𝑠
let 𝑎𝑠 += scatter (replicate 𝛼) 𝑠𝑖𝑜𝑡𝑎 𝑠𝑎𝑠,

where the three arrays 𝑠𝑖𝑠, 𝑠𝑎𝑠, and 𝑠𝑖𝑜𝑡𝑎 are 𝑖𝑠, 𝑎𝑠 and iota 𝑛 sorted with respect
to 𝑖𝑠, respectively (using radix sort). iota 𝑛 returns a length 𝑛 array of consecutive
integers starting from 0: iota 𝑛 = [0, 1, . . . , 𝑛 − 1]. 𝑓hist is defined by

𝑓hist ← Vjp𝜆 (ℎ𝑠[𝑖𝑠[𝑖]], 𝜆(𝑙𝑖 , 𝑎𝑖 , 𝑟𝑖) → 𝑙𝑖 ⊙ 𝑎𝑖 ⊙ 𝑟𝑖),

except that it’s modified (as for reduce) to not return the adjoints of 𝑙𝑖 and 𝑟𝑖 .
12A segmented scan seg_scan is akin to scan except it is also passed a flag array—i.e, an array con-

sisting of 1s and 0s that is the same shape as the input array to scan—that denotes where each seg-
ment of the input array begins. The segmented scan then computes the inclusive prefix scan of each
segment; the scan is “reset” at the beginning of each new segment. It has the following type signature:

seg_scan : (⊙ : 𝛼→ 𝛼→ 𝛼) → (𝑒⊙ : 𝛼) → (𝑓 𝑙𝑎𝑔𝑠 : [𝑛]int) → (𝑎𝑠 : [𝑛]𝛼) → [𝑛]𝛼

34 CHAPTER 3. PARALLEL AUTOMATIC DIFFERENTIATION

Since sorting is expensive in practice, we support specialized implementations for
common operators: addition, multiplication, min, and max. As with the specialized
implementation for reduce, the forward sweep consists of the hist statement en-
hanced with extended operators (see [18] for further details), and the return sweep is
similar to that of reduce, except that in the function that computes updates to 𝑎𝑠[𝑖], 𝑦
is replaced with ℎ𝑠[𝑖𝑠[𝑖]].

3.4.3 Scan
Recall that the scan combinator returns a reduce (with respect to a given binary
associative operator ⊙) of every non-empty prefix of a list:

scan : (𝛼→ 𝛼→ 𝛼) → 𝛼→ []𝛼→ []𝛼
scan ⊙ 𝑒⊙ [𝑎0 , 𝑎1 , . . . , 𝑎𝑛−1] ≡ [𝑒⊙ ⊙ 𝑎0 , 𝑒⊙ ⊙ 𝑎0 ⊙ 𝑎1 , . . . , 𝑒⊙ ⊙ 𝑎0 ⊙ 𝑎1 ⊙ · · · ⊙ 𝑎𝑛−1].

To derive the rule for scan, we adapt the semantic definition above into a loop-based
formulation:

𝑦𝑠[0] = 𝑎𝑠[0]
for 𝑖 = 1 . . . 𝑛 − 1
𝑦𝑠[𝑖] = 𝑦𝑠[𝑖 − 1] ⊙ 𝑎𝑠[𝑖],

and then apply the reverse mode rewrite rule from Figure 3.3 to obtain

for 𝑖 = 𝑛 − 1 . . . 1 do

𝑎𝑠[𝑖] += 𝜕(𝑦𝑠[𝑖 − 1] ⊙ 𝑎𝑠[𝑖])
𝜕𝑎𝑠[𝑖] · 𝑦𝑠[𝑖]

𝑦𝑠[𝑖 − 1] += 𝜕(𝑦𝑠[𝑖 − 1] ⊙ 𝑎𝑠[𝑖])
𝜕𝑦𝑠[𝑖 − 1] · 𝑦𝑠[𝑖]

𝑎𝑠[0] += 𝑦𝑠[0].

Since neither statement in the body of the loop depends on the other, they can be
separated:

for 𝑖 = 𝑛 − 1 . . . 1 do

𝑎𝑠[𝑖] += 𝜕(𝑦𝑠[𝑖 − 1] ⊙ 𝑎𝑠[𝑖])
𝜕𝑎𝑠[𝑖] · 𝑦𝑠[𝑖]

for 𝑖 = 𝑛 − 1 . . . 1 do

𝑦𝑠[𝑖 − 1] += 𝜕(𝑦𝑠[𝑖 − 1] ⊙ 𝑎𝑠[𝑖])
𝜕𝑦𝑠[𝑖 − 1] · 𝑦𝑠[𝑖]

𝑎𝑠[0] += 𝑦𝑠[0].

The first loop is parallel and hence can be computed by a map. The contributions to 𝑦𝑠
in the second loop can be used to derive a recurrence of the form

𝑦𝑠[𝑖 − 1] = 𝑦𝑠′[𝑖 − 1] + 𝑏𝑖−1 · 𝑦𝑠[𝑖] for 𝑖 = 𝑛 − 1 . . . 1.

where 𝑏𝑖 =
𝜕(𝑦𝑠[𝑖]⊙𝑎𝑠[𝑖])

𝜕𝑦𝑠[𝑖] (and is a constant). The recurrence bottoms out at 𝑛 − 1 because
𝑦𝑠[𝑛 − 1] is unchanged by the loop. Re-indexing with 𝑖 → 𝑖 + 1, we obtain

𝑦𝑠[𝑖] = 𝑦𝑠′[𝑖] + 𝑏𝑖 · 𝑦𝑠[𝑖 + 1] for 𝑖 = 𝑛 − 2 . . . 0.

3.4. REWRITE RULES FOR PARALLEL CONSTRUCTS 35

which can be computed with a parallel scan [11] over the initial 𝑦𝑠 (before the contri-
butions from the loop) and 𝑏𝑠, which is an array of each 𝑏𝑖 , i.e., 𝑏𝑠[𝑖] = 𝑏𝑖 :

let 𝑦𝑠 = scan (𝜆(𝑟, 𝑏𝑙) (𝑦, 𝑏𝑟) → (𝑦 + 𝑏𝑟 · 𝑟, 𝑏𝑙 · 𝑏𝑟)) (0, 1) 𝑦𝑠 𝑏𝑠 ⊲ map (.0),

where (.0) (𝑥, 𝑦) = 𝑥. Suppose each element of 𝑦𝑠 is a vector of length 𝑑 such that
each element of 𝑏𝑠 is a 𝑑 × 𝑑 matrix. If 𝑑 is a constant (e.g., the array elements are
tuples of scalars) the work-depth asymptotic is preserved, but the translation is still
not AD-efficient. We do, however, support vectorized operators for scan efficiently by
interchanging the scan inside the map:

scan (map ⊙) 𝑒⊙ 𝑥𝑠 ⇒ transpose 𝑥𝑠 ⊲ map (scan ⊙ 𝑒⊙) ⊲ transpose,

and generate specialized code for the vectorized addition operator.

3.4.4 Parallel Scatter
Recall that let 𝑦𝑠 = scatter 𝑥𝑠 𝑖𝑠 𝑣𝑠 produces an array 𝑦𝑠 by updating in-place the
array 𝑥𝑠 at the 𝑚 indices in 𝑖𝑠 with corresponding values of 𝑣𝑠. The forward sweep
saves the elements of 𝑥𝑠 that are about to be overwritten prior to performing the update:

let 𝑥𝑠saved = gather 𝑥𝑠 𝑖𝑠
let 𝑦𝑠 = scatter 𝑥𝑠 𝑖𝑠 𝑣𝑠,

where gather 𝑥𝑠 𝑖𝑠 has the same semantics as map (𝜆𝑖 → 𝑥𝑠[𝑖]) 𝑖𝑠. The return sweep
(1) first updates the adjoint of 𝑣𝑠 with the elements gathered from 𝑦𝑠, then (2) creates
the adjoint of 𝑥𝑠 by zeroing out the elements from 𝑦𝑠 that were subject to the update,
and (3) restores 𝑥𝑠 to its state before the update (from 𝑥𝑠saved):

let 𝑣𝑠 += gather 𝑦𝑠 𝑖𝑠
let 𝑥𝑠 = scatter 𝑦𝑠 𝑖𝑠 (replicate 𝑚 0)
let 𝑥𝑠 = scatter 𝑦𝑠 𝑖𝑠 𝑥𝑠saved.

Both sweeps have 𝑂(𝑚)work and 𝑂(1) depth.

3.4.5 Map
Consider the map

let 𝑥𝑠 = map (𝜆𝑎 → 𝑠𝑡𝑚𝑠 in 𝑥) 𝑎𝑠.
If the lambda has no free variables, the return sweep is simply

let 𝑎𝑠 = map (𝜆(𝑎, 𝑎0 , 𝑥) →
−−−→
𝑠𝑡𝑚𝑠

←−−−
𝑠𝑡𝑚𝑠 in 𝑎0 + 𝑎) 𝑎𝑠 𝑎𝑠 𝑥𝑠,

where 𝑎 is the new contribution to the adjoint of each 𝑎, computed in←−−−𝑠𝑡𝑚𝑠.
Handling free variables is more challenging because the differentiated map must

return the adjoint contributions to the free variables. A naive way of handling free
variables is to turn them into bound variables. For example,

map (𝜆𝑖 → 𝑎𝑠[𝑖]) 𝑖𝑠 ,

may be converted into

map (𝜆(𝑖 , 𝑎𝑠′) → 𝑎𝑠′[𝑖]) 𝑖𝑠 (replicate 𝑛 𝑎𝑠),

36 CHAPTER 3. PARALLEL AUTOMATIC DIFFERENTIATION

where 𝑛 is the size of 𝑖𝑠. Unfortunately, this is asymptotically inefficient for partially
used arrays—as in the case above—because the adjoint will be mostly zeroes.

In an impure language, adjoint updates for free variables can be implemented as a
generalized reduction [66]13 wherein the adjoint of a free array variable 𝑎𝑠[𝑖] is updated
with an operation 𝑎𝑠[𝑖] += 𝑣, implemented with atomics or locks in the parallel case. In
our pure setting, we instead introduce accumulators that preserve purity and guarantee
the generalized reduction properties at the type level. An array can be temporarily
turned into an accumulator with withacc:14

withacc : [𝑑]𝛼 → (acc(𝛼) → acc(𝛼)) → [𝑑]𝛼.

Intuitively we view accumulators as a write-only view of an array. Semantically, accu-
mulators are lists of index/value pairs, each denoting an update of an array. Accumu-
lators are updating via an update function:

upd : int→ 𝛼→ acc(𝛼) → acc(𝛼).

When we use upd on an accumulator, we add an index/value pair to its list, returning a
new accumulator. Operationally, upd immediately writes to the underlying array and
does not actually maintain a list of updates in memory. The purpose of accumulators is
to allow the compiler to reason purely functionally, in particular ensuring that all data
dependencies are explicit and allowing efficient code generation. Accumulators are
similar to the accumulation effects in Dex [84] and have the same motivation. The main
difference is that Dex requires every part of the compiler to be effect-aware, whereas in
Futhark accumulators are a realized via a couple of expressions confined to the IR.

Free array-typed variables in the body of maps are thus turned into accumulators
while generating return sweep code for the map, during which we can perform adjoint
updates directly via upd. We allow implicit conversion between accumulators and
arrays of accumulators, as this allows us to directly map them. For example,

let 𝑥𝑠 = map (𝜆𝑖 → 𝑎𝑠[𝑖]) 𝑖𝑠 ,

results in the return sweep code

let 𝑎𝑠 = withacc 𝑎𝑠 (𝜆𝑎𝑠acc →
map (𝜆(𝑖 , 𝑥, 𝑎𝑠) → upd 𝑖 𝑥 𝑎𝑠) 𝑖𝑠 𝑥𝑠 𝑎𝑠acc),

where we treat 𝑎𝑠acc as an array of accumulators when passed to map and treat the
result of the map as a single accumulator. This is efficient because accumulators have
no runtime representation and it avoids tedious boilerplate. The equivalent imperative
(generalized reduction) code is

forall 𝑘 = 0 . . . length(𝑖𝑠) - 1
𝑎𝑠[𝑖𝑠[𝑘]] += 𝑥𝑠[𝑘].

During the lifetime of an accumulator, the underlying array may not be used—
this prevents observation of intermediate state. Since the Futhark IR is typed, this is
mechanically ensured via a simple linear type system.

13A loop is a generalized reduction if all its cross-iteration dependencies are due to array variables 𝑥𝑠
that only appear in reduction statements of the form 𝑥𝑠[𝑖𝑠[𝑖]] ⊙= 𝑒, where 𝑒 does not contain 𝑥𝑠, and ⊙ is
associative and commutative.

14For simplicity we treat only single-dimensional arrays in this section, but the idea also works in the
multidimensional case.

3.5. IMPLEMENTATION AND OPTIMIZATIONS 37

Accumulators are sufficient to express the adjoint computation inside maps because
(1) any read from an array 𝑎𝑠[𝑖] is turned into an accumulation on 𝑎𝑠[𝑖] and (2) the only
place on the return sweep where 𝑎𝑠 can be read outside an accumulation statement is
the definition of 𝑎𝑠, which by definition is the last use of 𝑎𝑠, hence it is safe to turn it
back into an array there.

3.5 Implementation and Optimizations
We have implemented the reverse mode AD transformation as a pass in the Futhark
compiler. The presented transformation rules were tuned to preserve fusion opportu-
nities, both with constructs from a statement’s differentiation and across statements.

We added accumulator support through the compiler—for the GPU backends, they
ultimately boil down to atomic updates, such as atomicAdd in CUDA. Unoptimized
accumulators, however, often result in suboptimal performance because they access
memory in an uncoalesced fashion and are subject to conflicts, e.g., threads simultane-
ously accessing the same location. To address this, Section 3.5.1 presents accumulator
optimizations that convert them into more specialized constructs (e.g., map-reduce)
that are easier to optimize. Section 3.5.2 discusses how to optimize checkpointing for
arrays that are constructed by in-place updates inside loop nests and how to support
while loops.

3.5.1 Optimizing Accumulators
We demonstrate our accumulator optimizations on matrix-matrix multiplication. To aid
readability, we omit withacc and also use an imperative notation in which forall
loops denote map operations. Since we’re dealing with two-dimensional arrays in this
section, the indices for accumulator updates are specified with a pair, e.g,upd (𝑖 , 𝑘) 𝑣 𝑎𝑠𝑠
can be understood as the imperative 𝑎𝑠𝑠[𝑖 , 𝑘] += 𝑣.

Suppose our two input matrices are 𝑎𝑠𝑠 : [𝑚][𝑞]𝛼 and 𝑏𝑠𝑠 : [𝑞][𝑛]𝛼 (where 𝛼 is a
numeric type); the following code computes their product 𝑐𝑠𝑠 : [𝑚][𝑛]𝛼 by taking the
dot product of each row of 𝑎𝑠𝑠 and column of 𝑏𝑠𝑠:

forall 𝑖 = 0 . . . 𝑚 - 1
forall 𝑗 = 0 . . . 𝑛 - 1
𝑐𝑠𝑠[𝑖 , 𝑗] = sum (map (·) 𝑎𝑠𝑠[𝑖 , :] 𝑏𝑠𝑠[:, 𝑗]),

where sum ≡ reduce (+) 0. Differentiating the code above results in the return sweep

forall 𝑖 = 0 . . . 𝑚 - 1
forall 𝑗 = 0 . . . 𝑛 - 1
forall 𝑘 = 0 . . . 𝑞 - 1
𝑎𝑠𝑠[𝑖 , 𝑘] += 𝑏𝑠𝑠[𝑘, 𝑗] · 𝑐𝑠𝑠[𝑖 , 𝑗]
𝑏𝑠𝑠[𝑘, 𝑗] += 𝑎𝑠𝑠[𝑖 , 𝑘] · 𝑐𝑠𝑠[𝑖 , 𝑗],

which is not efficient because (temporal) locality can be improved. To address this, we
have designed and implemented a pass that transforms common accumulator access
patterns into reductions. The analysis searches for the first accumulator directly nested
in a perfect map nest and checks whether its indices are invariant across any of the
parallel dimensions. (In the example above, 𝑎𝑠𝑠 is accumulated on indices [𝑖 , 𝑘] that
are both invariant to the parallel index 𝑗.) In such a case, the map nest is split into

38 CHAPTER 3. PARALLEL AUTOMATIC DIFFERENTIATION

two: the code on which the accumulated statement depends and the code without the
accumulator statement,15 which is simplified and treated recursively. The map nest
encapsulating the accumulation is reorganized such that the invariant dimension (𝑗)
is moved innermost. (It is always safe to interchange parallel loops inwards.) The
accumulation statement is taken out of this innermost map, which is modified to only
produce the accumulated values, whose sum is rewritten to be the value accumulated
into 𝑎𝑠𝑠:

forall 𝑖 = 0 . . . 𝑚 - 1
forall 𝑘 = 0 . . . 𝑞 - 1
𝑠𝑎 = sum (map (·) 𝑏𝑠𝑠[𝑘, :] 𝑐𝑠𝑠[𝑖 , :])
𝑎𝑠𝑠[𝑖 , 𝑘] += 𝑠𝑎

forall 𝑘 = 0 . . . 𝑞 - 1
forall 𝑗 = 0 . . . 𝑛 - 1
𝑠𝑏 = sum (map (·) 𝑎𝑠𝑠[:, 𝑘] 𝑐𝑠𝑠[:, 𝑗])
𝑏𝑠𝑠[𝑘, 𝑗] += 𝑠𝑏 .

The code now consists of two matrix multiplication-like kernels (with different parallel
foralldimensions than the original). These are optimized by a later pass that performs
block and register tiling whenever it finds an innermostmap-reducewhose input arrays
are invariant to one of the outer parallel dimensions. We have extended this pass (1)
to support accumulators, (2) to keep track of the array layout (transposed or not), (3)
to copy from global to shared memory in coalesced fashion for any layout, and (4) to
exploit some of the parallelism of the innermost dot product as done in [91].

This optimization achieves an order-of-magnitude speedup at the application level
for benchmarks dominated by matrix multiplication—see the GMM and LSTM bench-
marks in sections 3.6.6 and 3.6.7.

3.5.2 Loop Optimizations and Limitations

As discussed in section 3.3, loop-variant variables are saved by default at the entry
of each iteration of a loop. This technique does not preserve the work asymptotic of
the original program when a loop-variant array is modified in-place. For example, the
loop below constructs an array of length 𝑛 in 𝑂(𝑛) work, but the checkpointing of the
forward sweep requires 𝑂(𝑛2)work:

loop 𝑥𝑠 = 𝑥𝑠0 for 𝑖 = 1 . . . 𝑛 - 1 do
let 𝑥𝑠[𝑖 , 𝑗] = 𝑎𝑠[𝑖 , 𝑗] · 𝑥𝑠[𝑖 − 1, 𝑗]
in 𝑥𝑠.

Iteration-level checkpointing is not needed if the loop nest does not have any false
dependencies (war or waw):16 since no loop-variant values are “lost” through the loop
nest, it is sufficient to checkpoint 𝑥𝑠 only once at the entry to the outermost loop of
the nest. Moreover, re-execution is safe because all the overwrites are idempotent.
To exploit this, we allow the user to annotate loop parameters that are free of false
dependencies—they’re checkpointed upon entry to the loop nest in the forward sweep
and restored just before entering the return sweep of the nest. Illustrating with the loop

15The optimization fires only if the number of redundant access to global memory introduced by splitting
the map nest is less than two.

16The absence of false dependencies means that the loop has only true (raw) dependencies or no depen-
dencies at all.

3.6. EXPERIMENTAL EVALUATION 39

above, we have:

let 𝑥𝑠saved = 𝑥𝑠0
let 𝑥𝑠′ =
loop (𝑥𝑠, 𝑎𝑐𝑐) = (𝑥𝑠0 , 0) for 𝑖 = 1 . . . 𝑛 - 1 do
let 𝑥𝑠[𝑖 , 𝑗] = 𝑎𝑠[𝑖 , 𝑗] · 𝑥𝑠[𝑖 − 1, 𝑗]
in 𝑥𝑠

let 𝑥𝑠 = 𝑥𝑠saved
let (𝑥𝑠′′, 𝑎𝑠) =
loop (𝑥𝑠, 𝑎𝑠) = (𝑥𝑠′, 𝑎𝑠) for 𝑖 = 𝑛 - 1 . . . 1 do
let 𝑥𝑠[𝑖 , 𝑗] = 𝑎𝑠[𝑖 , 𝑗] · 𝑥𝑠[𝑖 − 1, 𝑗]
let 𝑎𝑠[𝑖 , 𝑗] += 𝑥𝑠[𝑖 − 1, 𝑗] · 𝑥𝑠[𝑖 , 𝑗]
let 𝑥𝑠[𝑖 − 1, 𝑗] = 𝑎𝑠[𝑖 , 𝑗] · 𝑥𝑠[𝑖 , 𝑗]
in (𝑥𝑠, 𝑎𝑠′)

let 𝑥𝑠0 += 𝑥𝑠′′.

Techniques in automatic parallelization can be used to automatically check the safety
of such annotations, statically [41], dynamically [25], and anywhere in between [80].

A second issue relates to while loops, on which we cannot perform AD directly
because their statically unknown iteration count hinders the allocation of checkpointing
arrays. To address this issue, the user may annotate a while loop with an iteration
bound 𝑛. The while loop is then transformed into an 𝑛-iteration for loop that contains
a perfectly nested if-then-else expression, which only executes the valid iterations of
the while loop. In the absence of such an annotation, the loop count is computed
dynamically by an inspector.

Finally, a limitation of the current implementation is that it does not support loop-
variant parameters that change their shape throughout the loop. In principle this can
be handled by dynamic re-allocations, but this might be expensive on GPUs.

3.6 Experimental Evaluation

3.6.1 Parallel Hardware and Methodology

System CPU GPU API
A100 2 × AMD EPYC 7352 NVIDIA A100 CUDA 11.6
MI100 2 × AMD EPYC 7352 AMD MI100 ROCm 5.0.1
2080 Ti 2 × Intel E5-2650 NVIDIA 2080 Ti CUDA 11.3

Figure 3.9: Systems used for benchmarking.

We benchmark on three different Linux systems, detailed in Figure 3.9. We report
mean runtime for 10 runs (following an initial run that is discarded), which includes
all overheads, except transferring program input and result arrays between device and
host. We report the absolute runtime of the differentiated and primal program and the
“overhead” of differentiation that corresponds to the ratio between the two. In optimal
AD, this ratio (counted in number of operations) is supposed to be a small constant [39],
hence the ratio serves as a good measure of the efficiency of an AD implementation.
We also report the memory usage of the primal (when applicable) and differentiated
program on the dataset with maximal memory consumption for each experiment.

40 CHAPTER 3. PARALLEL AUTOMATIC DIFFERENTIATION

3.6.2 ADBench: Sequential AD Overhead
ADBench is a collection of benchmarks for comparing different AD tools [108] to which
we have added Futhark implementations. We compile to sequential CPU code on the
A100 system and report the AD overhead using the largest default dataset for each
benchmark. We compare against Tapenade [4] and manually differentiated programs.
The results are shown in Figure 3.10.

Tool BA D-LSTM GMM HAND
Comp. Simple

Futhark 13.0 3.2 5.1 49.8 45.4
Tapenade 10.3 4.5 5.4 3758.7 59.2
Manual 8.6 6.2 4.6 4.6 4.4

Figure 3.10: ADBench sequential overheads; lower is better.

Futhark does well, in particular managing to outperform Tapenade in four out of
five cases. For the exception, BA, the bottleneck is packing the result (which is a sparse
Jacobian) in the CSR format expected by the tooling, which is code that is not subject to
AD. The HAND benchmark has two variants: a “simple” one that computes only the
dense part of the Jacobian and a “complicated” one that also computes a sparse part.
Tapenade handles the latter poorly. On HAND, both Tapenade and Futhark perform
poorly compared to manually differentiated code. Both BA and HAND produce sparse
Jacobians where the sparsity structure is known in advance, which is exploited by
passing appropriate seed vectors to jvp/vjp.

3.6.3 Comparison with Enzyme

Benchmark Primal runtimes (s) AD overhead
Original Futhark Futhark Enzyme

RSBench 2.311 2.127 3.9 4.2
XSBench 0.244 0.239 2.7 3.2
LBM 0.071 0.042 3.4 6.3

Figure 3.11: Enzyme results, showing absolute runtimes and AD overheads. The Enzyme AD
overheads are taken from [76]. RSBench and XSBench were measured on the 2080 Ti, while
LBM is measured on the A100, similar to the systems used in the Enzyme paper. For LBM the
workload is 120 × 120 × 150 for 100 iterations. RSBench and XSBench use the “small” datasets
with 10, 200, 000 and 17, 000, 000 “lookups”, respectively.

Enzyme is an LLVM compiler plugin that performs reverse mode AD, including
support for GPU kernels [76]. We have ported several benchmarks in order to compare
our solution with Enzyme, with results in Figure 3.11. The Enzyme overheads are copied
directly from [76]. RSBench and XSBench each constitute a large parallel loop that
contains inner sequential loops and control flow, as well as indirect indexing of arrays.
Our overhead is slightly smaller, although this may come down to micro-optimizations.
LBM comprises a sequential loop containing a parallel loop. As Enzyme currently only
supports differentiation of a single kernel, this requires some manual bookkeeping of
the tape, whereas Futhark automatically handles the loop. Our overhead is significantly
lower than Enzyme’s, possibly because we can handle the tape more efficiently across
the outer sequential loop.

3.6. EXPERIMENTAL EVALUATION 41

3.6.4 Case Study 1: Dense 𝑘-means Clustering

Data Futhark (ms) PyTorch JAX JAX(vmap)
Manual AD (ms) (ms) (ms)

A
10

0 D0 12.6 41.1 41.1 15.5 27.5
D1 19.0 10.6 8.7 2.1 107.9
D2 94.3 108.9 922.0 206.5 976.4

M
I1

00 D0 24.6 35.6 94.5 − −
D1 22.5 10.5 40.2 − −
D2 309.5 264.2 2303.2 − −

Figure 3.12: 𝑘-means clustering performance measurements for three different workloads. The
JAX and JAX(vmap) implementations use array intrinsics and a vectorizing map, respectively.
D0 = (5, 494019, 35), D1 = (1024, 10000, 256), D2 = (1024, 2000000, 10) where each tuple is for-
matted as (𝑘, 𝑛, 𝑑); 𝑘 is the number of clusters and 𝑛 the number of 𝑑-dimensional points. D0
corresponds to the KDD Cup dataset [59]. D1 and D2 were randomly generated. All data consists
of 32-bit floating points.

In this section, we benchmark the 𝑘-means example of Section 3.2.5. As shown in
Figure 3.4, in Futhark the cost function (Equation (3.3)) is written via nested map and
reduce operations. In first-order languages like PyTorch, the cost function must be
realized via array primitives; to efficiently compute the cost function, we expand the all
pairs norm between points 𝑃 and centroids 𝐶: ||𝑃−𝐶||2 = 𝑃2+𝐶2−2𝑃𝐶𝑇 . In expanded
form, all terms can be computed using vectorized operations, with the 𝑃𝐶𝑇 term being
computed by matrix multiplication.

We compare against a handwritten Futhark histogram-based implementation as
well as AD-based implementations in PyTorch and JAX on three qualitatively different
datasets. In PyTorch and JAX, array intrinsics like matrix multiplication (and the differ-
entiation thereof) are compiled to extremely efficient hand-tuned GPU code; to better
compare with Futhark’s programming model, a second JAX implementation using JAX’s
vectorizing map operation, vmap, was written in close analog to the Futhark implemen-
tation. The results are shown in Figure 3.12. When the histograms benefit from the
optimizations discussed in [46], the handwritten implementation can show significant
speedup over our AD approach: up to 3.3× on D0 on the A100. When they cannot, the
AD approach can be faster due to differing amounts of parallelism. Additionally, note
that the MI100 uses Futhark’s OpenCL backend, which—unlike CUDA—doesn’t sup-
port floating-point atomic add operations. Instead, atomic updates are implemented
via a spinlock which can result in significant additional overhead in the atomic his-
togram updates of the manual implementation and, to a lesser extent, accumulator
updates in the AD implementation. Futhark AD is on par with or significantly faster
than PyTorch on all datasets (as high as 8.5× on the A100 and 8.7× on the MI100). The
intrinsics-based JAX implementation demonstrates significant speedup over Futhark
on the D0 and D1 datasets, but Futhark demonstrates a 1.9× speedup on the larger D2
dataset. On D0, the vmap-based JAX implementation has a 1.5× speedup over Futhark,
but Futhark demonstrates speedups of around 10× on the other two datasets, likely a
product of the fact that preservation of nested parallelism becomes more impactful as
the number of clusters increases—we surmise JAX’s vectorizing/flat approach limits
locality optimizations. Our approach pays further dividends still: if the number of
points is made larger, beyond D2’s two million, the PyTorch and JAX implementations
run out of memory due to manifesting the entire 𝑛 × 𝑘 array of point-cluster distances.

42 CHAPTER 3. PARALLEL AUTOMATIC DIFFERENTIATION

3.6.5 Case Study 2: Sparse 𝑘-means Clustering

Futhark (s) PyTorch (s) JAX (s)
Workload Manual AD

A
10

0
movielens 0.06 0.16 1.47 0.38
nytimes 0.09 0.30 5.24 1.35

scrna 0.16 0.58 9.32 8.91

M
I1

00

movielens 0.44 5.32 3.24 −
nytimes 0.44 9.55 11.58 −

scrna 0.42 2.87 20.81 −

Figure 3.13: Sparse 𝑘-means performance measurements for three NLP workloads. 𝑘 = 10 for all
datasets, with a fixed iteration count of 10 and a 32-bit representation. The movielens dataset uses
data from the ML 20M dataset described in [42] with dimensions (139𝐾, 131𝐾) and a density of
0.11%. The nytimes and scrna datasets are the same as used in [78], with dimensions (300𝐾, 102𝐾)
and (66𝐾, 27𝐾) and densities of 0.23% and 7.3%, respectively.

We have implemented a sparse formulation of 𝑘-means clustering, which uses a
dense representation for the centroids and a sparse representation for the input points.
The Futhark implementations use the CSR format, while PyTorch and JAX both use
the COO format.17 As explained in the previous section, we compute the cost with
vectorized operations in the PyTorch and JAX implementations.

Figure 3.13 shows runtimes on three publicly available sparse NLP workloads. On
the A100, our AD is slower than the manual code by a factor between 2.5 − 3.7× due
to an optimization allowing updates to fit in the L2 cache [46]. On the A100, Futhark
AD demonstrates speedups as high as 17.5× against AD competitors. On the MI100,
PyTorch has modest speedup over Futhark on the movielens dataset, but Futhark is
faster on the two other datasets.

3.6.6 Case Study 3: GMM

To evaluate the parallelism preservation of our AD transformation, we compile the
Futhark implementation of the GMM benchmark from the ADBench suite to paral-
lel CUDA. We compare against ADBench’s implementation of GMM in PyTorch (also
run on CUDA), which we have improved (by a > 10× factor) by vectorizing all com-
prehensions. We benchmark on a selection of 1,000 and 10,000-point datasets from
ADBench, see Figure 3.14. The runtime of the primal program is dominated by matrix
multiplication (∼ 70%).

As discussed in Section 3.6.4, matrix multiplication is a primitive in PyTorch; we
expect that differentiation of matrix multiplication is implemented very efficiently. In
Futhark there are no such primitives: matrix multiplication is written with maps, whose
differentiation yield accumulators, which are further optimized as described in Sec-
tion 3.5.1. The benchmark results are shown in Figure 3.15. The results demonstrate
significant speedups over PyTorch on both systems, with an average speedup of 1.65×
on the A100 and of 2.75× on the MI100. This demonstrates the feasibility of competitive
AD performance in the absence of array primitives.

17PyTorch’s functional AD constructs (jvp and hvp) currently raise runtime errors with CSR format.
JAX’s transformations only support batch COO representation.

3.6. EXPERIMENTAL EVALUATION 43

Data 𝑛 𝑑 𝐾 𝑛 𝑑 𝐾

D0 1k 64 200 D3 10k 64 25
D1 1k 128 200 D4 10k 128 25
D2 10k 32 200 D5 10k 128 200

Figure 3.14: GMM ADBench parameters for the datasets used in Figure 3.15; 𝑛 is the number of
points, 𝑑 the dimensionality of the input data, and 𝐾 the number of Gaussian distributions. All
datasets use 64-bit floats. The corresponding datasets may be found on the ADBench GitHub
repository (https://github.com/microsoft/ADBench).

Measurement D0 D1 D2 D3 D4 D5

A
10

0

PyT. Jacob. (ms) 7.4 15.8 15.2 5.9 12.5 64.8
Fut. Speedup 2.1 2.2 1.4 1.6 1.5 1.0
PyT. Overhead 3.5 4.9 2.8 3.2 4.0 3.2
Fut. Overhead 2.0 1.8 1.9 2.7 2.8 2.8

M
I1

00

PyT. Jacob. (ms) 20.9 51.5 42.5 20.7 38.5 193.1
Fut. Speedup 3.3 4.0 2.1 2.9 2.5 1.7
PyT. Overhead 5.9 5.3 2.4 2.6 3.1 2.8
Fut. Overhead 3.0 2.9 3.0 2.8 2.8 2.8

Figure 3.15: GMM benchmark results on the A100 and MI100 systems. Fut. and PyT. refer to
Futhark and PyTorch, respectively. PyT. Jacob. is the time to compute the full Jacobian of the
objective function in PyTorch. On Futhark, block and register tile sizes of 16 and 3 were used,
respectively.

3.6.7 Case Study 4: LSTM

Speedups
PyTorch Jacob. Futhark nn.LSTM JAX JAX(vmap)

A
10

0 D0 45.4 ms 3.0 11.6 4.5 0.3
D1 740.1 ms 3.3 22.1 6.4 0.9

M
I1

00 D0 89.8 ms 2.6 4.0 − −
D1 1446.9 ms 1.8 5.4 − −

Overheads
PyTorch Futhark nn.LSTM JAX JAX(vmap)

A
10

0 D0 4.1 2.1 2.7 3.5 1.4
D1 4.3 3.9 2.2 3.7 0.8

M
I1

00 D0 5.0 4.2 7.2 − −
D1 7.9 3.9 6.6 − −

Figure 3.16: LSTM speedups and overheads on D0 = (1024, 20, 300, 192) and
D1(1024, 300, 80, 256) where each tuple is formatted as (𝑏𝑠, 𝑛, 𝑑, ℎ); 𝑏𝑠 is the batch size, 𝑛
the sequence length, 𝑑 the dimensionality of the input data, and ℎ the dimensionality of the
hidden state. All data consists of 32-bit floating points. nn.LSTM refers to the torch.nn.LSTM
implementation. Futhark was run with block and register tile sizes of 16 and 4.

Long Short-Term Memory (LSTM) [96] is a type of recurrent neural network archi-
tecture popular in named entity recognition and part-of-speech tagging [22, 94]. We

44 CHAPTER 3. PARALLEL AUTOMATIC DIFFERENTIATION

benchmark two LSTM networks with hyper parameters common in natural language
processing [88, 22, 69, 67]. The AD-based implementations are based on the architec-
ture in [96]. We also compare against PyTorch’s torch.nn.LSTM class, which wraps
the NVIDIA cuDNN LSTM implementation [21] on the A100 and AMD’s MIGraphX
on the MI100; note that both implementations are handwritten/optimized and feature
manual differentiation. The results are shown in Figure 3.16. Futhark is about 3×
faster than PyTorch on the A100 and slightly less on the MI100. As with GMM, LSTM
is dominated by matrix multiplications. None of the AD-based implementations are
competitive against the manual torch.nn.LSTM implementations.18 JAX performs
up to two times faster than Futhark when matrix multiplication is a highly optimized
primitive and up to ten times slower when it’s not.

3.6.8 Depth and Memory Consumption

Benchmark Mem. Depth Mem. Overhead
RSBench 9.9 MiB 6 1.4
XSBench 225 MiB 6 1.0
LBM 550 MiB 5 33.6
GMM 4.1 GiB 4 2.1
LSTM 0.84 GiB 4 2.1

Figure 3.17: Primal memory footprints, maximal program depth, and the memory AD overhead
of the benchmarks. For benchmarks with multiple datasets, the memory footprint is reported for
the dataset with the largest memory consumption (D5 for GMM and D1 for LSTM).

Benchmark Dataset Futhark Manual Futhark AD
Dense 𝑘-means D0 188 MiB 172 MiB
Sparse 𝑘-means scrna 2.7 GiB 2.7 GiB

Figure 3.18: Memory footprint comparison between the manual and AD Futhark implementa-
tions for dense and sparse 𝑘-means.

Figure 3.17 shows the memory overhead (the ratio of the memory footprint of the
differentiated and primal programs) and maximal program depths of the benchmarks.
Futhark’s memory overhead on LBM is large: this can be ameliorated by annotating
the outer loop to be strip-mined; doing so modestly increases the AD overhead from
3.4 to 4.5, but decreases the memory overhead from 33.6 to 8.7. The memory overheads
of the remaining benchmarks demonstrate the efficiency of our approach: the forward
and reverse passes combined should use roughly twice as much memory as the primal
program—the remaining benchmarks achieve this or better. The GPU benchmarks also
feature non-trivial depth; nevertheless we achieve competitive results, in part because
the forward sweep is often executed only once or twice, irrespective of depth—see
Section 3.3.3. Memory overheads aren’t applicable to the 𝑘-means benchmarks, but it’s
informative to compare the AD-based implementations to the manual ones; Figure 3.18
shows that the implementations all use a similar amount of memory.

18The results appear correlated with the ratio between peak FLOPS with and without the usage of tensor
cores.

3.7. RELATED WORK 45

3.7 Related Work
Reverse mode differentiation of reduce and scan is discussed in [85]. Our rule for
reduce is similar but was developed independently [79] and we handle scan differently:
our approach is less efficient for complex operands because we manifest the Jacobian
matrices, but more efficient for single-value operands on GPUs as it requires less shared
memory to implement the derived scan operator. Neither our rule for scan nor the one
from [85] is asymptotics-preserving in general, but they are for most scans that occur in
practice.

𝐹 is a functional array language that supports nested parallelism. Its AD implemen-
tation uses the forward mode, along with rewrite rules for exploiting sparsity in some
cases [101].

Dex is a recent language built specifically to support efficient AD. Empirical bench-
marks for AD in Dex have not been published, but we can compare with their ap-
proach [84]. In contrast to our conventional “monolithic” approach where reverse
mode AD is a transformation completely distinct from forward mode, Dex uses a tech-
nique where the program is first linearized, producing a linear map, after which this
linear map is then transposed, producing the adjoint code. Like Dex, we do not support
recursion nor AD of higher-order functions. Dex does not make direct use of a tape in
the classical sense, but instead constructs arrays of closures followed by defunctional-
ization. The actual runtime data structures will conceptually consist of multiple tapes
in the form of multidimensional irregular arrays. Dex does not report strategies for
check-pointing, or optimization of particular accumulation patterns as in Section 3.5.1,
or of tape accesses.

The time-space tradeoff for reverse mode AD is systematically studied by Siskind
and Pearlmutter [104]. Tapenade [4] supports a wealth of checkpointing techniques;
our loop strip-mining technique is a practical and simple special case of that.

Enzyme demonstrates the advantage of performing AD after standard compiler
optimizations have simplified the program [75]. Like Enzyme, we apply our AD trans-
formation on a program that has already been heavily optimized by the compiler. But
where Enzyme is motivated by performing AD on a post-optimization low-level repre-
sentation, our work takes advantage of the information provided by high-level parallel
constructs and post-AD optimizations to generate efficient code.

Enzyme has also been applied to GPU kernels where it makes use of AD-specific
GPU memory optimizations including caching tape values in thread-local storage as
well as memory-aware adjoint updates [76]. We achieve equivalent performance, but
our approach is not based on differentiating single kernels—indeed, the GPU code
we generate for a differentiated program may have a significantly different structure
than the original program. For example, the optimized adjoint code for a matrix
multiplication requires two matrix multiplications, each its own kernel, as discussed in
Section 3.5.1.

Recent AD work on OpenMP details an approach to reverse mode AD for parallel
loops [53]. Updates to free variables in loops are handled by sharing adjoints across
threads and atomic updates; our approach to map is similar, but preservation of nested
parallelism allows us to identify and reduce some updates into a single atomic update.

ML practitioners use tools such as PyTorch [86] that incorporate AD. These are less
expressive than our language and do not support true nested parallelism but instead
require the program to use flat (although vectorized) constructs. On the other hand,
they can provide hand-tuned adjoints for the primitives they do support. (However,
it would be straightforward to augment Futhark to allow the programmer to replace

46 CHAPTER 3. PARALLEL AUTOMATIC DIFFERENTIATION

AD-generated derivatives from jvp/vjp with hand-tuned alternatives when desired.)
JAX is another such example; it supports automatic differentiation of pure Python

code and just-in-time (JIT) compilation to XLA HLO [34, 17]. Unlike PyTorch, JAX also
features a vectorizing map operation which often yields good performance on some
workloads. However, applying (reverse mode) AD on flat-parallel vectorized code may
prevent further memory-locality optimizations; our approach applies AD to nested-
parallel code, which enables further optimization opportunities, as demonstrated by
our treatment of matrix multiplication-like computations.

Reverse mode AD has also been implemented in DSLs for stencil computations [54].
The challenge here is to combine AD with loop transformations such that the resulting
code is a stencil itself and thus can be optimized with the repertoire of existent opti-
mizations. AD has also been described for tensor languages that support constrained
forms of loops, which in particular has the benefit of not requiring the use of tapes [9].

3.8 Conclusions
We have presented a fully operational compiler implementation of both reverse and
forward mode AD in a nested-parallel, hardware-neutral functional language. Our
transformation is based on using redundant execution to eliminate the need for an
explicit tape and is performed before the parallelism of a program is mapped to hard-
ware. It thus benefits from specialized rules for parallel constructors and flexibility in
aggressively optimizing the original and AD code independently. Our experimental
evaluation shows that our approach is effective in practice and competitive with both
well-established frameworks that encompass more specialized languages such as Py-
Torch and JAX and with newer research efforts aimed at a lower-level language, such
as Enzyme.

Data-Availability Statement
An artifact of our AD prototype in Futhark that reproduces the benchmarking results of
Section 3.6 is available on Zenodo [99]. Additionally, AD support has been integrated
into the Futhark compiler and is now included in its standard releases.

Acknowledgments
We are grateful to Rory Mitchell for suggesting the AD formulation of 𝑘-means, to Lotte
Bruun and Ulrik Larsen for integrating the AD rules for scan and hist, and to Martin
Elsman for using Futhark’s AD infrastructure and providing valuable feedback.

This work has been supported by the Independent Research Fund Denmark (DFF)
under the grants Deep Probabilistic Programming for Protein Structure Prediction and
FUTHARK: Functional Technology for High-performance Architectures, and by the UCPH
Data+ grant: High-Performance Land Change Assessment.

Chapter 4

Automap

This chapter is an adaptation of the following publication:

Robert Schenck, Nikolaj Hey Hinnerskov, Troels Henriksen, Magnus Madsen, and
Martin Elsman. “AUTOMAP: Inferring Rank-Polymorphic Function Applications
with Integer Linear Programming”. In: Proceedings of the ACM on Programming

Languages 8.OOPSLA2 (2024). doi: 10.1145/3689774. url: https://doi.
org/10.1145/3689774

The image above illustrates implicit replication and mapping, using photos of Kenneth
E. Iverson (the creator of APL and J) and Roger Hui (co-creator of J) as the elements.

4.1 Introduction
Dynamically typed programming languages, such as Python or JavaScript, are fre-
quently lauded for their ease-of-use, conciseness, and flexibility. Programmers using
these languages often prefer to keep details implicit, in particular if the details can be
determined uniquely from the context; however, even though the resulting code may be
more ergonomic/compelling, bugs and ambiguities may be “swept under the carpet”
if the programmer isn’t careful. Static type systems can detect and prevent such bugs
at compile-time, but often come with a notational cost: programmers are burdened by
adding type annotations. A static type system with full type inference gives the best
of both worlds; programmers have the same static guarantees but do not have to write
any type annotations.

Unfortunately, static type systems sacrifice flexibility and many aspects of dynamic
programming languages are difficult to model in static type systems. The implicit lifting
of scalar operators across array operands in dynamic array languages like NumPy is
one such aspect. For example, if 𝑥𝑠 and 𝑦𝑠 are vectors of equal length, one can write

47

https://doi.org/10.1145/3689774
https://doi.org/10.1145/3689774
https://doi.org/10.1145/3689774

48 CHAPTER 4. AUTOMAP

𝑥𝑠 + 𝑦𝑠 for their element-wise addition. Further, when mixing arrays of different rank,
NumPy performs broadcasting—which we refer to as replication—and implicitly adds
extra dimensions to the smaller-rank array (by replicating its elements) to match the
shape of the larger one.

Languages which allow functions to operate on arguments of any rank in this man-
ner are rank polymorphic.1 Rank polymorphism originated in mathematical notation
for linear algebra and was first introduced as a programming construct in APL [55].
Most rank polymorphic languages are dynamically typed; while work exists on ex-
pressing rank polymorphism in statically typed languages [107, 102, 37], the resulting
type systems are typically either complicated or leave out features such as paramet-
ric polymorphism or higher-order functions, which are difficult to integrate with rank
polymorphism.

We investigate a form of rank polymorphism in which functions on their own do
not have rank-polymorphic types, but function applications can have map and rep
operations—which are used for function lifting and argument replication, respectively—
inserted implicitly by the compiler as part of the type inference elaboration process.
While such an elaboration is less expressive than having rank polymorphism as a first-
class construct in the type system, we argue that it is sufficient for the majority of cases.
Our approach also has the interesting property that rank polymorphism can be seen as
a purely syntactical mechanism for leaving some operations implicit (namely, map and
rep) at call sites, meaning that the program can also be expressed and understood in a
fully explicit manner simply by inserting these operations. This is not the case for most
rank-polymorphic languages.

Implicit programming constructs have a long history in several programming lan-
guages [57]. Most notably, implicits have been used to express type classes in the Scala
programming language [83, 82]. In programming languages with implicit constructs,
the compiler transforms a program where some information is missing (in our case map
and rep) and elaborates the program into one where those implicit constructs have
been made explicit. That is, the compiler translates a program with implicit constructs
into one with explicit constructs. In some cases, the compiler may have to reject the
input program: perhaps too much has been left implicit and the elaboration has become
ambiguous.

An implicit programming construct is useful when it fits with the mental model
of a programmer and thus allows the programmer to omit certain details without any
unexpected surprises. For example, a Hindley-Milner type system is useful because if
a program is well-typed we can (a) make an inferred type explicit and the program is
still well-typed and (b) remove an explicit type annotation and the system can still infer
the now omitted type. We would like similar properties for our system with implicit
map and rep operations.

In this chapter, we propose Automap, a technique that enables implicit map and
rep operations to be inferred by a polymorphic type system, using integer linear pro-
gramming to express and solve the implicit constraints during inference. We present
an elaboration algorithm that makes implicit map and rep operations explicit and for-
malize the elaboration with three languages: a source language where map and rep may
be left implicit, an internal language where every function application is annotated with
a shape annotation that represents the number of map and rep operations needed at
that site, and, finally, a target language where every map and rep is explicit. We define

1Not to be confused with the entirely unrelated, but confusingly similarly named, notion of higher-rank

polymorphism, which is about nesting type variable quantifiers.

4.1. INTRODUCTION 49

a standard dynamic semantics for the target language. We define the meaning of a
source program via translation to the internal language and then to the target language.
However, we allow only source programs for which there is a unique way to insert map
and rep, and we describe how to detect programs where elaboration is ambiguous. We
also demonstrate that we accept all programs that would be supported under a type
system that does not support Automap.

We implement Automap as an extension of Futhark. Futhark’s constraint-based type
system supports parametric polymorphism, higher-order functions, and top-level let-
generalization; it deviates from classic Hindley-Milner in that it does not support local
let-generalization (which would significantly complicate the type system with minimal
benefit to the programmer [116, 117]).

We show that Automap is useful by removing “administrative” map operations from
a collection of real-world benchmarks, where we judge it improves the readability of
the code. Even with Automap confined to judicious use (i.e., maps are only removed
when it improves readability), we are able to remove 54% of all map operations. We
found Automap particularly useful for expressing mathematical code; for example, in
expressions that implement matrix/vector computations.

While the type inference uses integer linear programming, which in theory has
exponential complexity, we empirically show that most of the integer linear programs
(ILPs) are small and, moreover, the full Automap technique imposes a modest average
type checking overhead of 2.5 × .

In summary, the contributions of the chapter are:

• Motivation: We motivate the need for Automap with several real-world Futhark
programs.

• Type System and Elaboration: We present a simple type system for a core lan-
guage reminiscent of Futhark where maps and reps may be omitted and are
inferred through a constraint-based elaboration process. We define the meaning
of programs through the elaboration into a target language where all maps and
reps are made explicit.

• Meta-Theory: We show that the elaboration satisfies several important properties,
including Well-Typedness, Determinism, Disambiguation, Forwards Consistency,
and Backwards Consistency as explained in the following section.

• Implementation: We implement Automap as an extension of the Futhark compiler
using integer linear programming.

• Evaluation: We evaluate the usefulness of Automap on a collection of real-world
Futhark programs. Specifically, we empirically show that (1) Automap is effective
(i.e., we can omit map and rep operations to make programs more concise and
readable), (2) type inference with linear constraint solving is practically feasible,
and (3) Automap is able to unambiguously capture those map operations that
programmers want to leave implicit.

The chapter is organized as follows: Section 4.2 motivates the need for implicit maps
and reps in Futhark. In Section 4.3 through Section 4.7, we present a formalization of
the mechanism, in terms of an Automap elaboration into a well-defined target language.
Section 4.8 discusses the implementation of the constraint-based type system, in par-
ticular its interaction with other desirable type system features. Section 4.9 evaluates
the usefulness of Automap on a collection of real-world Futhark programs. Finally,

50 CHAPTER 4. AUTOMAP

Section 4.10 discusses future work, Section 4.11 presents related work, and Section 4.12
concludes.

4.2 Motivation
This section explores how data-parallel programming problems are expressed with
combinations of map and other parallel operations. We illustrate that being explicit
about every map operation can be tedious and show how Automap can address this via
automatic inference ofmap andrep operations. The examples use Futhark notation, but
the programming model and syntax is quite similar to other languages in the Haskell or
Standard ML tradition. In particular, we consider multidimensional arrays to be simply
arrays of arrays, similarly to lists, and for the type of arrays with elements of type 𝜏, we
write []𝜏. When we map across an array, we traverse only the outermost dimension.
To operate along inner dimensions, we nest maps. This differs from languages such as
APL, where an array is modeled as a separate shape vector and value vector, and map-like
operations apply directly to the elements of the value vector [56, 55].

4.2.1 Idea
Consider adding two vectors element-wise. In Futhark, we would use map2 to map
across two arrays simultaneously (map2 is similar to Haskell’s zipWith):2

map2 (+) [1, 2, 3] [4, 5, 6].

This is awkward for longer expressions. While we can define a helper function
vecadd = map2 (+), it would be better if we could simply write [1, 2 , 3] + [4, 5, 6],
using infix notation here purely as a syntactical convenience. Since the function (+)
has type int → int → int, while the operands have type []int, this application is
not well-typed. However, it is not difficult to see that if we lift (+) to operate on arrays
instead of scalars, the application becomes well-typed—and such lifting is exactly what
map𝑁 does, where𝑁 denotes the arity of the function.3 To operate on multidimensional
arrays, map𝑁 can be nested, such as in map2 (map2 (+)) for matrix addition. A type
checker could inspect every function application and decide, based on the rank of the
operands, how much to lift the function. However, simply inserting a mapwhen needed
is not sufficient to support desirable programming patterns. In particular, we also want
to mix scalar and array operands:

[3, 4, 5] + 1.

Given a function rep : 𝜏→ []𝜏 that replicates its argument an unspecified number of
times,4 the above expression can be rewritten as

[3, 4, 5] + rep 1,

and then further as
map2 (+) [3, 4, 5] (rep 1).

2In chapter 3, we allowed SOACs to be called with 𝑘-ary functions for simplicity—here we use map2
(instead ofmap) since Automap transforms source-level Futhark code (which doesn’t support SOACs operating
on an arbitrary number of arrays at once).

3In practice, the Futhark built-in library supports map𝑁 for 2 ≤ 𝑁 ≤ 9 and are trivially defined in terms
of zip and map.

4The issue of how many elements should be replicated will be discussed briefly in Section 4.8.

4.2. MOTIVATION 51

Automap should perform the above rewriting automatically; essentially, Automap is an
algorithm for inserting map𝑁 and rep operations in order to make the program type
correct. While Automap is fundamentally just a syntactical convenience, the impact
on readability can be quite dramatic, as we will see in the following section and in
Section 4.9. In particular, expressions that are transcriptions of mathematical formulae
involving vectors and matrices will otherwise be littered with map and rep operations;
for example, if 𝐴 is a three-dimensional tensor and 𝑐 is scalar, it is clearer to write 𝐴 · 𝑐
instead of map (map (map (· 𝑐))) 𝐴.

4.2.2 Examples

Consider the following definition of linear interpolation:

def 𝐿 𝑣 𝑤 𝑡 = 𝑣 + (𝑤 − 𝑣) · 𝑡.

Because there are no type ascriptions, it would be valid to infer any rank for the
parameter types, inserting map and rep as needed. How should Automap pick between
them? A good strategy (and one that usually aligns with programmer intent and is
easy to communicate to the programmer) is to always pick the solution that inserts the
fewest operations. The size of a solution is equal to the number of inserted map and
rep operations, so we’d like to find minimal solutions. If multiple solutions with the
minimum possible size exist, the program is ambiguous and should be rejected. One
useful property of this strategy is that a size zero solution is necessarily unique, and
so ambiguous cases can always be addressed by the user manually inserting maps and
reps into the source program. We enshrine this strategy as the first rule of Automap:

Rule 1: minimize the number of inserted maps and reps.

The second rule of the Automap strategy follows from the fact that it is never
necessary to both map and rep a single application since there are only two possible
ways that a rank mismatch can occur: either the argument is under-dimensioned (in
which case one or more reps are required) or over-dimensioned (in which case one or
more maps are required).

Rule 2: a single application may have implicit maps or reps but never both.

Note that Rule 1 does not imply Rule 2 (i.e., there are programs where the minimal
solution violates Rule 2). Not only do these rules eliminate a lot of potential ambiguity,
but they are easy to communicate to the programmer and are easy to understand—
important qualities in any implicit programming system.

Returning to the linear interpolation example, following Rules 1 and 2, we infer

𝐿 : float→ float→ float→ float.

(That is, no implicit map or rep operations are inferred.) Despite the function itself
being scalar, rank polymorphic applications are well-typed through Automap:
where 𝑣, 𝑤,and 𝑡 have type float and 𝑣𝑠, 𝑤𝑠, and 𝑡𝑠 have type []float (i.e., they are
vectors).

52 CHAPTER 4. AUTOMAP

Source Application Elaborated Application
𝐿 𝑣𝑠 𝑤𝑠 𝑡 −→ map3 𝐿 𝑣𝑠 𝑤𝑠 (rep 𝑡)
𝐿 𝑣𝑠 𝑤𝑠 𝑡𝑠 −→ map3 𝐿 𝑣𝑠 𝑤𝑠 𝑡𝑠
𝐿 𝑣 𝑤 𝑡𝑠 −→ map3 𝐿 (rep 𝑣) (rep 𝑤) 𝑡𝑠,

As a more complicated example, consider a programcheck for determining whether
a square matrix 𝐴 is an X-matrix, meaning it has nonzero elements on its diagonals and
zero elements elsewhere. With explicit maps, an implementation could be:

def outerprod 𝑓 𝑥𝑠 𝑦𝑠 = map (𝜆𝑥 → map (𝑓 𝑥) 𝑦𝑠) 𝑥𝑠
def bidd 𝐴 = outerprod (==) (indices 𝐴) (indices 𝐴)
def xmat 𝐴 = map2 (map2 (||)) (bidd 𝐴) (reverse (bidd 𝐴))
def check 𝐴 = map2 (map2 (==)) (xmat 𝐴) (map (map (≠ 0)) 𝐴) ⊲ flatten ⊲ and.

The indices function accepts an array of size 𝑛 and produces the array [0, . . . , 𝑛 − 1],
flatten eliminates the outer dimension, and the function and takes a vector of
booleans and returns true if all elements are true. The code is somewhat noisy,
using map𝑁 eight times. Blindly removing all maps (and changing to infix notation),
we obtain:

def outerprod 𝑓 𝑥𝑠 𝑦𝑠 = (𝜆𝑥 → 𝑓 𝑥 𝑦𝑠) 𝑥𝑠
def bidd 𝐴 = outerprod (==) (indices 𝐴) (indices 𝐴)
def xmat 𝐴 = bidd 𝐴 || reverse (bidd 𝐴)
def check 𝐴 = xmat 𝐴 == (𝐴 ≠ 0) ⊲ flatten ⊲ and.

By the minimal solution strategy, we infer the type of outerprod to be the binary
application function, which is not what we intended. As a fix, we put back a single map:

def outerprod 𝑓 𝑥𝑠 𝑦𝑠 = map (𝜆𝑥 → 𝑓 𝑥 𝑦𝑠) 𝑥𝑠.

Also, the body of the check function is ambiguous, with the following solutions:

1. map2 (map2 (==)) (xmat (rep 𝐴)) (rep (rep (𝐴 ≠ 0))) ⊲ flatten ⊲ and,

2. map2 (map2 (==)) (xmat 𝐴) (rep (map2 (≠) 𝐴 (rep 0))) ⊲ flatten ⊲ and.

In the first solution, we infer 𝐴 to be a scalar and in the second to be a vector. Both of
these solutions are minimal, but neither of them is actually what we want: we intended
𝐴 to be a matrix! In this case, we can address the ambiguity by adding a type annotation
on the parameter:5

def check (𝐴 : [][]int) = xmat 𝐴 == (𝐴 ≠ 0) ⊲ flatten ⊲ and.

The additional type constraint ensures that only a single Automap elaboration is well-
typed. The inferred reps can be simplified away during elaboration, as we will discuss
in Section 4.8.

4.2.3 Desired Properties
We consider five requirements that the design of Automap should satisfy. These re-
quirements also ensure a reasonable mental model for programmers. We base the
requirements on how type inference works in most programming languages:

5Note that Automap never requires type annotations and check could also be disambiguated by inserting
a map operation.

4.3. FORMALIZATION 53

• Well-Typedness: If the program, with explicit and implicit map and rep opera-
tions, is well-typed, then the fully elaborated program with only explicit opera-
tions is well-typed.

• Determinism: For any program, the elaboration is unambiguous, or the program
is rejected.6

• Disambiguation: If a program is ambiguous, the ambiguity can be resolved by
explicit insertion of map and rep operations.

• Forwards Consistency: If the programmer inserts an otherwise inferred map or
rep operation then the resulting program is unambiguous, and its elaboration is
semantically equivalent to the elaboration of the original program.

• Backwards Consistency: If the programmer removes an explicit map or rep op-
eration then the resulting program is either ambiguous or unambiguous and its
elaboration is semantically equivalent to the elaboration of the original program.

The (Well-Typedness) and (Determinism) properties are self-explanatory. The (Dis-
ambiguation) property is important because it means that a programmer can always
resolve an ambiguous situation by being more explicit. Programmers are familiar with
this situation from programming languages with partial type inference where some
type annotations may be needed to guide the type checker. Bidirectional type checkers
typically require some type annotations, but even languages like Haskell may require
type annotations to resolve specific type class instances. The (Forwards Consistency)
and (Backwards Consistency) properties are a bit more involved, but they essentially
state that the system is well-behaved when we add inferred or remove explicit map or
rep operations. The idea is inspired by type annotations in languages with complete
type inference like Standard ML [72]. For (Forwards Consistency), if Standard ML has
inferred that an expression has a specific type then we as programmers can annotate
that specific type and the newly annotated program still type checks. Similarly, for
(Backwards Consistency), if a Standard ML program has a type annotation, and it type
checks then we can remove that type annotation and the updated program still type
checks. Automap should have analogous properties for inserting inferred or removing
explicit maps replicates, modulo ambiguity.

4.3 Formalization
In the following sections, we formalize the Automap mechanism for a polymorphic
higher-order array language based on a small subset of Futhark/the language intro-
duced in chapter 2. The language is simplistic—it features top-level polymorphic
function definitions and a few basic operations on arrays including a built-in map con-
struct and a rep construct for modeling arrays containing one replicated value. We
further subdivide the language into three different but highly similar languages: (i) the
source language, (ii) the internal language, and (iii) the target language. The idea is that
the programmer writes programs in the source language; the source language is sub-
sequently transformed into the internal language—which features annotations to keep
track of implicit maps and reps—during type checking. Finally, the internal language is
elaborated into the target language, which corresponds directly to the source language

6A naive elaboration could reject all programs. We show that this is not the case for Automap.

54 CHAPTER 4. AUTOMAP

program except with all map and rep operations explicit. Aside from the differences
shown in Table 4.1, the three languages are identical and will be fully specified in the
next section, but we’ll first give an overview of each.

Source language Internal language Target language
Implicit map and reps ✓ ✓ ✗

Explicit map and reps ✓ ✓ ✓

△ (𝑀, 𝑅) annots. ✗ ✓ ✗

Example sqrt [1, 2, 3] sqrt [1, 2, 3] △ (𝑀, 𝑅) map sqrt [1, 2, 3]

Table 4.1: The differences between the source, internal, and target languages. The “Example” row
shows how the source expression sqrt [1, 2, 3] is transformed into the internal language and
then from the internal language into the target language; sqrt is an illustrative scalar function
that computes the square root of its argument.

Source Language

The source language features implicitmap andrep constructs. This means that inserting
map and rep constructs is always optional. For example, in the “Example” row of
Table 4.1, the source expression has an implicit map. Note that explicit maps and reps
are allowed in source expressions as well (and are necessary to address ambiguity).

Internal Language

The internal language allows for so-called flexible function applications, which are anno-
tated with rank variables that specify the implicit maps and reps. To be more precise,
all applications are annotated with objects of the form △ (𝑀, 𝑅); 𝑀 is a rank variable
that represents the number of implicit maps and 𝑅 is a rank variable that represents the
number of implicit reps. A constraint-based inference algorithm finds values for all
the 𝑀s and 𝑅s in the △ (𝑀, 𝑅) objects of an internal language program, after which it is
straightforward to translate an internal language program into a well-typed target pro-
gram by simply inserting the number of map and rep constructs that the solved-for 𝑀s
and 𝑅s dictate. In the “Example” row of Table 4.1, the source expression sqrt [1, 2, 3]
is transformed to the internal expression sqrt [1, 2, 3] △ (𝑀, 𝑅) by annotating it with
an △ (𝑀, 𝑅) object.

Target Language

In the target language—unlike in the source and internal languages—all map and rep
constructs must be explicit. In the “Example” row of Table 4.1, the target expression
map sqrt [1, 2, 3] is obtained from the internal expression sqrt [1, 2, 3] △ (𝑀, 𝑅) by
using the inference algorithm to find the solution𝑀 ↦→ 1, 𝑅 ↦→ 0 and then transforming
into the corresponding target expression map sqrt [1, 2, 3]—one map and no reps.

The mechanism we propose will infer map and rep constructs only at application
sites, which in practice covers most needs. However, one may consider extending the
mechanism to insertmap andrep constructs also for other constructs such as immediate
values and references to variables, which may be beneficial for elaborating programs
with branches that have different ranks. In such cases, we leave it up to the programmer

4.3. FORMALIZATION 55

to make use of the polymorphic identity function for having Automap infer additional
map and rep constructs.

4.3.1 Preliminaries and Language Grammars
In the following we shall assume a denumerably infinite set 𝑉r of rank variables, ranged
over by 𝑄, 𝑀, and 𝑅, a denumerably infinite set 𝑉t of type variables, ranged over by 𝛼
and 𝛽, and a denumerably infinite set𝑉p of program variables, ranged over by 𝑥, 𝑦, 𝑧, and
𝑓 .

𝑆⊘ ::= [] dimension
| 𝑆⊘ 𝑆⊘ concatenation
| • empty shape

𝜏⊘ ::= int integers
| 𝜏⊘ → 𝜏⊘ functions
| 𝑆⊘ 𝜏⊘ arrays
| 𝛼 (𝛼 ∈ 𝑉t) type variable

𝑆 ::= 𝑆⊘ shapes without rank vars
| []

𝑄 (𝑄 ∈ 𝑉r) rank power
| 𝑆 𝑆 concatenation

𝜏 ::= 𝜏⊘ types without rank vars
| 𝜏→ 𝜏 functions
| 𝑆 𝜏 arrays

𝜎 ::= 𝜏 type
| ∀𝛼 . 𝜎 quantified type

Figure 4.1: Grammar for closed shapes (𝑆⊘), shapes (𝑆), closed types (𝜏⊘), types (𝜏), and type
schemes (𝜎).

Figure 4.1 shows the grammars for shapes, types, and type schemes. Notice that we
distinguish between closed shapes (𝑆⊘), that is, shapes that do not contain rank variables,
and shapes that may contain rank variables (𝑆). Similarly, we distinguish between
closed types (𝜏⊘) that do not contain rank variables and types (𝜏) that may contain rank
variables. We also write frv(𝑋) and ftv(𝑋) to denote the free rank variables and the free
type variables of the object 𝑋, respectively. We define equality on shapes and types as
the smallest equivalence relation over these sets that includes • as an identity element
for shape concatenation (thus, for any shape 𝑆, we have 𝑆 • = • 𝑆 = 𝑆.)

The rank power shape []
𝑄—where𝑄 is a rank variable—should be intuitively under-

stood to be a sequence of 𝑄 []. Correspondingly, when 𝑛 is a nonnegative integer, []𝑛
is sugar for a sequence of 𝑛 []. That is, []0 = •, and []

(𝑛+1) = []
𝑛
[].

When 𝜎 = ∀𝛼 . 𝜏, we consider 𝛼 to be bound in 𝜏, and we consider type schemes to
be equal up to renaming of bound type variables. We write ∀𝛼1 , . . . , 𝛼𝑘 . 𝜎 as sugar for
∀𝛼1 . · · · ∀𝛼𝑘 . 𝜎. We shall also sometimes write ®𝑋(𝑛) to denote a sequence of 𝑛 objects
𝑋1 , ..., 𝑋𝑛 , and we may sometimes just write ®𝑋 if the length of the sequence is clear
from the context.

Figure 4.2 shows the grammar for the source, internal, and target languages. Syntac-
tically, all three languages are identical except that applications in the internal language
are annotated with rank specifications (highlighted in blue in the figure). The expres-
sion 𝑒 𝑒 △ (𝑀, 𝑅) is annotated with the rank variables 𝑀 and 𝑅. After the Automap
system determines integral values for the rank variables 𝑀 and 𝑅, they will be substi-
tuted for integral ranks to obtain an expression of the form 𝑒 𝑒 △ (𝑛, 𝑛).

For values of the form 𝜆𝑥. 𝑒 and programs of the form def 𝑓 𝑥 = 𝑒 ; 𝑝, the program
variable 𝑥 is considered bound in 𝑒 and the program variable 𝑓 is considered bound in 𝑝
(function definitions may not be recursive). We assume that partial applications of map

56 CHAPTER 4. AUTOMAP

𝑣 ::= 𝑛 (𝑛 ∈ Z) constant integer
| 𝜆𝑥. 𝑒 function
| [𝑣, . . . , 𝑣] array
| rep 𝑣 replicated array

𝑝 ::= def 𝑓 𝑥 = 𝑒 ; 𝑝 definition
| 𝑒 expression

𝑒 ::= 𝑣 value
| 𝑥 (𝑥 ∈ 𝑉p) program variable
| [𝑒 , . . . , 𝑒] arrays
| map 𝑒 𝑒 map
| rep 𝑒 rep
| 𝑒 𝑒 △ (𝑀, 𝑅) (annotated) application

Figure 4.2: Grammar for values (𝑣), expressions (𝑒), and programs (𝑝). In the internal language,
applications are annotated with rank specifications (highlighted in blue).

and rep are implicitly eta-converted. For instance, we write map 𝑒 to mean 𝜆𝑥. map 𝑒 𝑥,
if map 𝑒 appears alone. For 𝑛 ∈ N, we also write map𝑛 𝑒 and rep𝑛 𝑒 as syntactic sugar
for a map nest and a rep nest, respectively:

map0 𝑒 = 𝑒 , rep0 𝑒 = 𝑒 ,

map𝑛+1 𝑒 = map (map𝑛 𝑒), rep𝑛+1 𝑒 = rep (rep𝑛 𝑒).

For the precise semantics that we give in the following section, replicated arrays
have unbounded size, which is modeled by representing a replicated array by a single
construct rep 𝑣, which is an array that has the value 𝑣 at every index.

A rank substitution (𝑠r) maps rank variables to nonnegative integers, a type substitution

(𝑠t) maps type variables to types, and a value substitution (𝑠v) maps program variables to
values. The effect of applying a substitution 𝑠 (of any kind) to an object 𝑋, written 𝑠(𝑋),
is to replace (simultaneously) all free (i.e., non-bound) occurrences of variables in 𝑋

with corresponding values in 𝑠 (extended to be the identity outside its domain, written
dom(𝑠)). When 𝑠 and 𝑡 are substitutions and 𝑋 is some object, we write (𝑡 ◦ 𝑠)(𝑋) to
mean 𝑡(𝑠(𝑋)). Also, we use the notation 𝑠|𝐷 to denote the substitution 𝑠 restricted to
the domain 𝐷.

4.4 Target Language
We now present the target language. Recall that the only difference between the source
language and the target language is that the target language does not feature implicit
map and rep constructs. Instead, all map and rep constructs are explicit. By virtue
of this, the target language is simpler and can be assigned a dynamic semantics—the
semantics of the source language are only indirectly defined by first converting into the
internal language during type checking and then subsequently into the target language
by solving for the rank variables in the △ (𝑀, 𝑅) application annotations. For these
reasons, we present the target language first.

Specifically, we define a type system for the language as well as a dynamic semantics,
and we demonstrate a type safety property that says that “well-typed expressions do
not get stuck”. Note that the target language does not track array sizes statically (this is
handled by other work [7, 45]) but it does track array ranks. Essentially, the type safety
property guarantees that function application always involves applying a function to
an argument and that operations that require array arguments indeed are passed arrays
at runtime.

Environments (Γ) map program variables to type schemes, and we write Γ, 𝑥 : 𝜎 to
specify that the environment that extends Γ to map 𝑥 to 𝜎, assuming 𝑥 ∉ dom(Γ). In

4.4. TARGET LANGUAGE 57

⊢ 𝑣 : 𝜏

⊢ 𝑛 : int
SV-Int

∀𝑖 ∈ {1, . . . , 𝑛} . ⊢ 𝑣𝑖 : 𝜏

⊢ [𝑣1 , . . . , 𝑣𝑛] : [] 𝜏
SV-Array

⊢ 𝑣 : 𝜏

⊢ rep 𝑣 : [] 𝜏
SV-Rep

𝑥 : 𝜏 ⊢ 𝑒 : 𝜏′

⊢ 𝜆𝑥.𝑒 : 𝜏→ 𝜏′
SV-Fun

Γ ⊢ 𝑒 : 𝜎

Γ, 𝑥 : 𝜎 ⊢ 𝑥 : 𝜎
S-Var

Γ ⊢ 𝑒 : 𝜎 𝜎 ≥ 𝜏

Γ ⊢ 𝑒 : 𝜏
S-Inst

∀𝑖 ∈ {1, . . . , 𝑛} . Γ ⊢ 𝑒𝑖 : 𝜏

Γ ⊢ [𝑒1 , . . . , 𝑒𝑛] : [] 𝜏
S-Array

⊢ 𝑣 : 𝜏

Γ ⊢ 𝑣 : 𝜏
S-Val

Γ, 𝑥 : 𝜏 ⊢ 𝑒 : 𝜏′

Γ ⊢ 𝜆𝑥. 𝑒 : 𝜏→ 𝜏′
S-Fun

Γ ⊢ 𝑒1 : 𝜏1 → 𝜏2 Γ ⊢ 𝑒2 : 𝜏1

Γ ⊢ 𝑒1 𝑒2 : 𝜏2
S-App

Γ ⊢ 𝑒1 : 𝜏1 → 𝜏2 Γ ⊢ 𝑒2 : []𝜏1

Γ ⊢ map 𝑒1 𝑒2 : []𝜏2
S-Map

Γ ⊢ 𝑒 : 𝜏

Γ ⊢ rep 𝑒 : []𝜏
S-Rep

Γ ⊢ 𝑝 : 𝜎

Γ, 𝑥 : 𝜏 ⊢ 𝑒 : 𝜏′ { ®𝛼} ∩ ftv(Γ, 𝜎′) = ∅ Γ, 𝑓 : ∀®𝛼.𝜏→ 𝜏′ ⊢ 𝑝 : 𝜎′

Γ ⊢ def 𝑓 𝑥 = 𝑒 ; 𝑝 : 𝜎′
S-Def

Figure 4.3: Target language typing rules.

this section, we shall often write 𝜏 to mean 𝜏⊘, as all types are closed with respect to
rank variables and environments shall implicitly contain only closed type schemes (i.e.,
type schemes containing closed types). We say that a type scheme 𝜎 = ∀®𝛼.𝜏′ generalizes

a type 𝜏, written 𝜎 ≥ 𝜏, if there exists a type substitution 𝑠t such that dom(𝑠t) = { ®𝛼} and
𝑠t(𝜏′) = 𝜏.

Figure 4.3 gives typing rules for the target language. The typing rules allow infer-
ences among sentences of the form Γ ⊢ 𝑝 : 𝜎, which says that under Γ, 𝑝 has type
scheme 𝜎. Note that an expression is also a program and that we do not show the
implicit rule for typing a program that is an expression. The typing rules are closed
under type substitution:

Proposition 1 (Typing Closed Under Type Substitution). If Γ ⊢ 𝑝 : 𝜎 then 𝑠t(Γ) ⊢ 𝑝 : 𝑠t(𝜎),
for any type substitution 𝑠t.

Proof Sketch. By induction over the typing derivation (see appendix A for a complete
proof). The S-Inst case requires exploiting the fact that 𝜎 ≤ 𝜏 relation is closed under
substitution. The S-Def case requires the renaming of the bound variables { ®𝛼} to a new
set { ®𝛼′} to ensure that { ®𝛼′} ∩ ftv(𝑠t(Γ), 𝑠t(𝜎′)) = ∅. The remainder of the cases follow
straightforwardly by the inductive hypothesis. □

58 CHAPTER 4. AUTOMAP

The dynamic semantics is specified as a small-step contextual semantics and the
soundness result is demonstrated using well-known techniques [74, 119]. We define
the notions of contexts (𝐾) and redexes (𝑟) according to the grammars in Figure 4.4 below.

𝐾 ::= ⟨·⟩ | 𝐾 𝑒 | 𝑣 𝐾 | [𝑣, . . . , 𝑣, 𝐾, 𝑒 , . . . , 𝑒] Contexts
| rep 𝐾 | map 𝐾 𝑒 | map 𝑣 𝐾

𝑟 ::= (𝜆𝑥.𝑒) 𝑣 | map (𝜆𝑥.𝑒) [𝑣1 , · · · , 𝑣𝑛] Redexes
| map (𝜆𝑥.𝑒) (rep 𝑣)
| def 𝑓 𝑥 = 𝑒 ; 𝑝 Program redex

Figure 4.4: Context and redex grammars for the target language.

When 𝐾 is a context and 𝑒 is some expression, we write 𝐾⟨𝑒⟩ to denote the expression
obtained by filling the hole in the context 𝐾 with the expression 𝑒. Also, when 𝑝 is
a program, we write 𝐾⟨𝑝⟩ to denote the program obtained by filling the hole in the
context 𝐾 with the program 𝑝. A redex may either be a program or an expression (also
considered a program). In particular, during evaluation, top-level functions are first
substituted into the program expression before any proper evaluation occurs. Reduction
rules for programs (and expressions) are defined as:

def 𝑓 𝑥 = 𝑒 ; 𝑝 { 𝑝[𝜆𝑥.𝑒/ 𝑓],
(𝜆𝑥.𝑒) 𝑣 { 𝑒[𝑣/𝑥],

map (𝜆𝑥.𝑒) [𝑣1 , · · · , 𝑣𝑛] { [𝑒[𝑣1/𝑥], · · · , 𝑒[𝑣𝑛/𝑥]],
map (𝜆𝑥.𝑒) (rep 𝑣) { rep (𝑒[𝑣/𝑥]),

𝐾⟨𝑝⟩ { 𝐾⟨𝑝′⟩ if 𝑝 { 𝑝′ and 𝐾 ≠ ⟨·⟩.

Figure 4.5: Reduction rules for the target language.

The proofs for the following propositions are standard, so we relegate full proofs to
appendix A and only include proof sketches here. With redexes in hand, we can now
express a property saying that any well-typed program 𝑝 can be decomposed into an
evaluation context and a redex:

Proposition 2 (Unique Decomposition). If Γ ⊢ 𝑝 : 𝜎 then either 𝑝 is a value or there exists a

type scheme 𝜎′, a unique expression 𝑒, and a unique context 𝐾 such that 𝑝 = 𝐾⟨𝑒⟩ and Γ ⊢ 𝑒 : 𝜎′
and 𝑒 is a redex.

Proof Sketch. By induction over the typing derivation. All the cases are fairly straight-
forward (and follow by the inductive hypothesis). The C-App case requires casing on
whether or not 𝑒1 and 𝑒2 are values. □

Another central property of the type system is that it is closed under value substitution:

Proposition 3 (Typing Closed Under Value Substitution). If Γ, 𝑥 : 𝜎′ ⊢ 𝑝 : 𝜎 and ⊢ 𝑣 : 𝜎′
then Γ ⊢ 𝑝[𝑣/𝑥] : 𝜎.

Proof Sketch. By straightforward induction over the typing derivation. □

The following two properties state progress and preservation, which together express
type safety for the target language.

4.5. INTERNAL LANGUAGE 59

Proposition 4 (Progress). If ⊢ 𝑝 : 𝜎 then either 𝑝 is a value or there exists 𝑝′ such that 𝑝 { 𝑝′.

Proof Sketch. Follows by Proposition 2. □

Proposition 5 (Preservation). If ⊢ 𝑝 : 𝜎 and 𝑝 { 𝑝′ then ⊢ 𝑝′ : 𝜎.

Proof Sketch. By induction over the typing derivation, using Propositions 2 and 3. □

4.5 Internal Language
When the source language is transformed into the internal language during type check-
ing, constraints involving rank variables are generated at each function application site.
The rank variables specific to a given application are what populate the △ (𝑀, 𝑅) anno-
tations in the internal language and constraints involving 𝑀 and 𝑅 are emitted during
type checking. We now precisely define constraints and the internal type system.

4.5.1 Constraints
A constraint is a relation defined by the grammar in Figure 4.6. Constraints are generated
by the type rules in Figure 4.7 and capture relationships that must hold between types
or rank variables—either equality between types (𝜏1 � 𝜏2) or that one of two rank
variables 𝑀, 𝑅 must be assigned zero (𝑀 ∨· 𝑅).

𝑐 ::= 𝜏1 � 𝜏2 type equality
| 𝑀 ∨· 𝑅 zero-rank disjunction

𝐶 ::= ∅ | {𝑐, . . . } set of constraints

Figure 4.6: Grammar of constraints and constraint sets.

More formally, the constraint 𝜏1 � 𝜏2 is satisfiable by a substitution 𝑠 if 𝑠(𝜏1) = 𝑠(𝜏2)
and both 𝑠(𝜏1) and 𝑠(𝜏2) are closed (i.e., don’t contain any rank variables). The zero-rank
disjunction constraint 𝑀 ∨· 𝑅 is satisfiable by a substitution 𝑠 if 𝑠(𝑀) = 0 or 𝑠(𝑅) = 0.
Intuitively, the purpose of the zero-rank disjunction constraint is to enforce Rule 2 of
Section 4.2.2—namely that each application can have either implicit maps or implicit
reps, but not both.

For a set of constraints 𝐶, the substitution 𝑠 is a satisfier of 𝐶 if every constraint in 𝐶
is satisfiable by 𝑠. Constraint sets also have a notion of equivalence; two constraint sets
𝐶, 𝐶′ are equivalent, written 𝐶 ≃ 𝐶′, if a substitution 𝑠 is a satisfier of 𝐶 if and only if it
is a satisfier of 𝐶′.

4.5.2 Internal Type System
Figure 4.7 shows the typing rules for constraint-based judgments; the judgment Γ ⊢
𝑒 :𝑆 𝜎 ∥ 𝐶 says that under environment Γ, 𝑒 has scheme 𝜎 with frame 𝑆 when the
constraints in 𝐶 are satisfied. If a frame is the empty shape (•) it may be omitted from
the judgment; Γ ⊢ 𝑒 : 𝜎 ∥ 𝐶 is syntactic sugar for Γ ⊢ 𝑒 :• 𝜎 ∥ 𝐶 . Frames are
the extra leading dimensions on a result type generated by preceding implicit maps; in
the relation Γ ⊢ 𝑒 :𝑆 𝜎 ∥ 𝐶, frames function to syntactically separate these leading
dimensions from the scheme 𝜎, but you can think of the expression 𝑒 as having type
𝑆𝜎. Tracking frames separately from the rest of a type is important not only for some

60 CHAPTER 4. AUTOMAP

Γ ⊢ 𝑒 :𝑆 𝜎 ∥ 𝐶

⊢ 𝑛 : int ∥ ∅
C-Int

Γ ⊢ 𝑒 : 𝜎 ∥ ∅ 𝜎 ≥ 𝜏

Γ ⊢ 𝑒 : 𝜏 ∥ ∅
C-Inst

Γ, 𝑥 : 𝜎 ⊢ 𝑥 : 𝜎 ∥ ∅
C-Var

∀𝑘 ∈ {1, . . . , 𝑛} . Γ ⊢ 𝑒𝑘 :𝑆𝑘 𝜏𝑘 ∥ 𝐶𝑘
Γ ⊢ [𝑒1 , 𝑒2 , . . . , 𝑒𝑛] : []𝑆1𝜏1 ∥ {𝑆1𝜏1 � 𝑆𝑘𝜏𝑘 | 𝑘 ∈ {2, . . . , 𝑛}} ∪ 𝐶1 ∪ · · · ∪ 𝐶𝑛

C-Array

Γ ⊢ 𝑒1 :𝑆1 𝜏1 → 𝜏2 ∥ 𝐶1 Γ ⊢ 𝑒2 :𝑆2 𝜏3 ∥ 𝐶2
𝑀, 𝑅 fresh 𝐶 = {𝑀 ∨· 𝑅, []

𝑀 𝑆1 𝜏1 � []
𝑅 𝑆2 𝜏3}

Γ ⊢ 𝑒1 𝑒2 △ (𝑀, 𝑅) :
[]

𝑀
𝑆1

𝜏2 ∥ 𝐶 ∪ 𝐶1 ∪ 𝐶2
C-App

Γ, 𝑥 : 𝜏1 ⊢ 𝑒 :𝑆 𝜏2 ∥ 𝐶
Γ ⊢ 𝜆𝑥. 𝑒 : 𝜏1 → 𝑆 𝜏2 ∥ 𝐶

C-Fun

Γ ⊢ 𝑒1 :𝑆1 𝜏1 → 𝜏2 ∥ 𝐶1 Γ ⊢ 𝑒2 :𝑆2 𝜏3 ∥ 𝐶2

Γ ⊢ map 𝑒1 𝑒2 :[]𝑆1
𝜏2 ∥ {[]𝑆1𝜏1 � 𝑆2𝜏3} ∪ 𝐶1 ∪ 𝐶2

C-Map

Γ ⊢ 𝑒 :𝑆 𝜏 ∥ 𝐶
Γ ⊢ rep 𝑒 : []𝑆𝜏 ∥ 𝐶

C-Rep

Γ ⊢ 𝑝 : 𝜎

Γ, 𝑥 : 𝜏 ⊢ 𝑒 : 𝜏′ ∥ 𝐶 𝑠 satisfies 𝐶 { ®𝛼} ∩ ftv(𝑠(Γ), 𝜎′) = ∅
𝑠(Γ), 𝑓 : ∀®𝛼.𝑠(𝜏) → 𝑠(𝜏′) ⊢ 𝑝 : 𝜎′

𝑠(Γ) ⊢ def 𝑓 𝑥 = 𝑠(𝑒) ; 𝑝 : 𝜎′
C-Def

Figure 4.7: Constraint-based typing rules.

of the proofs of the propositions that follow, but is also critical for the implementation
(see Section 4.8.2).

The𝑀, 𝑅 fresh premise of the C-App rule introduces two globally fresh rank variables
𝑀 and 𝑅 which correspond to the number of implicit maps and reps of the application,
respectively. The 𝑀 ∨· 𝑅 constraint encodes that one of 𝑀 or 𝑅 must be zero since a
flexible function application allows either implicit reps or an implicit maps, but not both
(i.e., it enforces Rule 2 of Section 4.2.2). The constraint []𝑀 𝑆1 𝜏1 � []

𝑅 𝑆2 𝜏3 encodes type
equality between the parameter of the function (on the LHS) and the argument (on the
RHS). The important bits are the tacked on shapes—[]

𝑀 on the LHS and []
𝑅 on the RHS.

An under-dimensioned parameter is “lifted” to the correct rank via []
𝑀 (corresponding

to 𝑀 implicit maps), and an under-dimensioned argument has []
𝑅 extra dimensions

tacked on (corresponding to 𝑅 implicit reps). Notice that the resulting frame is []
𝑀𝑆1;

each implicit map of the current application (the number of which is given by 𝑀)
increases the dimensionality of the frame (and hence the application). 𝑆1 consists of

4.6. RANK ANALYSIS 61

any dimensions added by implicit maps of the function 𝑒1. (E.g., (𝜆𝑥.𝜆𝑦. 𝑥+ 𝑦) [1, 2, 3]
has a function type with frame [] because an implicit map is required to lift + over the
vector.)

The C-Map rule can be thought of as a specialization of the C-App rule where 𝑅 = 0
and 𝑀 = 1. The C-Def rule, which types programs, does not return constraint sets.
Constraint sets are solved individually for each top-level body. Splitting constraint sets
up at the granularity of top-level definitions ensures that map and rep elaboration is
solely a function of the body of the definition, rather than of the program as a whole.
As with the source language, we do not show the implicit rule for typing a program
that is an expression.

As an example of how a source language expression is transformed into an inter-
nal language expression using the rules of Figure 4.7, consider the source language
expression sqrt [1, 2, 3] introduced in Table 4.1. Via C-Var, C-Array, and C-App we
have

sqrt : int→ int

⊢ sqrt [1, 2, 3] △ (𝑀, 𝑅) :
[]

𝑀 int ∥ {𝑀 ∨· 𝑅, []
𝑀 int � []

𝑅
[] int}.

4.6 Rank Analysis

Finding a satisfier 𝑠 of a constraint set 𝐶 can always be done in two phases: first, a
compatible rank substitution 𝑠r is found by first relaxing the constraint sets generated
during type checking into rank-based constraints and then solving them using integer
linear programming; the rank substitution is then used to eliminate all rank variables
in 𝐶. We call this process rank analysis. Finally, a satisfying type substitution 𝑠t is found
for 𝑠r(𝐶); the satisfier 𝑠 can then be formed by the composition 𝑠 = 𝑠t ◦ 𝑠r. We start by
precisely defining a notion of rank for the language.

4.6.1 Rank

The rank of a shape or of a type, written | · |, is defined in Figure 4.8 and denotes
the dimensionality of the shape or type. Because a shape 𝑆 or a type 𝜏 may contain

|[]𝑄 | = 𝑄, |𝑆 𝜏| = |𝑆| + |𝜏|,
|[]| = 1, |𝛼| = 𝛼,
|𝑆1 𝑆2| = |𝑆1| + |𝑆2|, |𝜏1 → 𝜏2| = 0,
| • | = 0, |int| = 0.

Figure 4.8: Definition of rank; 𝛼 is the associated rank variable of 𝛼.

(rank and type) variables, |𝑆| and |𝜏|will be linear sums of integers and rank variables.
For each type variable, an associated rank variable that represents the rank of the given
type variable is introduced. Associated rank variables are distinguished by an overline:
𝑉|t| := {𝛼 | 𝛼 ∈ 𝑉t} is the set of associated rank variables for type variables. As an
example, the rank of []

𝑛int is given by |[]𝑛int| = |[]𝑛| + |int| = 𝑛 + 0 = 𝑛. Another
example—this time including a rank and a type variable—is |[]𝑀𝛼| = 𝑀 + 𝛼.

62 CHAPTER 4. AUTOMAP

4.6.2 Rank Constraints
This section introduces a rank-based relaxation of a constraint set 𝐶, used to solve for
the rank variables in 𝐶. The type equality constraint of Figure 4.6 can be relaxed to
rank equality constraints via application of | · |, which only enforce the ranks of the types
either side of the � to be equal; Figure 4.9 shows the constraint grammar extended with
rank equality constraints.

𝑐 ::= . . .

| |𝜏1| � |𝜏2| rank equality

Figure 4.9: Constraint grammar extended with the rank equality constraint.

The rank constraint |𝜏1| � |𝜏2| is satisfied by a rank substitution 𝑠r if 𝑠r(|𝜏1|) = 𝑠r(|𝜏2|)
and neither 𝑠r(|𝜏1|) nor 𝑠r(|𝜏2|) contain any rank variables (i.e., they’re both closed). We
also extend | · | to work over constraints:

|𝜏1 � 𝜏2| = |𝜏1| � |𝜏2|,
|𝑀 ∨· 𝑅| = 𝑀 ∨· 𝑅.

Intuitively, | · | is the identity operation on zero-rank disjunction constraints (𝑀 ∨· 𝑅)
because these constraints are already over rank variables. Finally, if 𝐶 is a set of
constraints, |𝐶| is the set of corresponding rank constraints: |𝐶| = {|𝑐| | 𝑐 ∈ 𝐶}.

As an example, consider the constraint set𝐶 = {𝑀 ∨· 𝑅, []
𝑀 int � []

𝑅
[]int} from

the typing of sqrt [1, 2, 3] △ (𝑀, 𝑅) just before Section 4.6 on the previous page. The
corresponding rank constraint set is given by |𝐶| = {𝑀 ∨· 𝑅, |[]𝑀 int � []

𝑅
[]int|} =

{𝑀 ∨· 𝑅, 𝑀 � 𝑅 + 1}, which is satisfied by 𝑠r = [𝑀 ↦→ 1, 𝑅 ↦→ 0]. This solution indicates
that there is an implicit map (because 𝑀 is assigned a value of 1) and aligns with the
target language elaboration shown in Table 4.1.

4.6.3 Size and Ambiguity
There may be many different rank substitutions that can satisfy the rank constraint
set |𝐶|. To stratify them, we quantify them via a notion of size. The size of a rank
substitution 𝑠r relative to a rank constraint set |𝐶| is defined as

size(𝑠r , |𝐶|) =
∑

𝑄∈frv(|𝐶|)
𝑠r(𝑄).

Note that size(𝑠r , |𝐶|) doesn’t count the rank of any associated rank variables for type
variables (i.e., variables of the form 𝛼) because frv(|𝐶|) doesn’t include associated rank
variables. Since all the rank variables in |𝐶| originate from flexible function-application
annotations (i.e. △ (𝑀, 𝑅,)), size(𝑠r , |𝐶|) expresses the total number of maps and reps
that 𝑠r assigns. The intent here is that smaller sized solutions are preferable—in accor-
dance with Rule 1—and the size function provides a means of ranking solutions.

With a notion of size, we can be more specific about the ambiguity of a rank constraint
set. We say that |𝐶| is ambiguous at size 𝑘 if there exist satisfying rank substitutions 𝑠r , 𝑠′r,
of |𝐶| with size(𝑠r , |𝐶|) = size(𝑠′r , |𝐶|) = 𝑘 and 𝑠r ≠ 𝑠′r. Otherwise, we say that |𝐶| is
unambiguous at size 𝑘; if |𝐶| is unambiguous at size 𝑘, it has at most one satisfier with
size 𝑘.

For an example, consider the constraint set {𝑀 ∨· 𝑅, []
𝑀𝛼 � []

𝑅
[][]int}. The

corresponding rank constraint set is given by {𝑀 ∨· 𝑅, 𝑀 + 𝛼 � 𝑅 + 2}; one possible

4.6. RANK ANALYSIS 63

satisfier with size 1 is 𝑠r = [𝑀 ↦→ 1, 𝑅 ↦→ 0, 𝛼 ↦→ 1], but another is 𝑠r = [𝑀 ↦→ 0, 𝑅 ↦→
1, 𝛼 ↦→ 3] and hence |𝐶| is ambiguous at size 1. On the other hand, |𝐶| is unambiguous
at size 0 and 𝑠r = [𝑀 ↦→ 0, 𝑅 ↦→ 0, 𝛼 ↦→ 2] is a satisfier. (All size 0 solutions are always
unique since they correspond to no implicit maps and reps.)

4.6.4 Rank Constraint Set Solving using Integer Linear Programming
To find a satisfying rank substitution 𝑠r for a rank constraint set |𝐶|, we construct
an integer linear program (ILP) from the constraints of |𝐶|. The rank variables of
|𝐶| constitute unknown non-negative integral variables in the ILP and the constraints
themselves are linearized and then added as constraints to the ILP. The ILP is constructed
such that any solution of the ILP (i.e., a mapping from rank variables to integer ranks)
constitutes a satisfying substitution 𝑠r of |𝐶|. Table 4.2 shows how rank constraints are
converted into constraints of the ILP.

Rank constraint ILP constraint
|𝜏1| � |𝜏2| |𝜏1| = |𝜏2|

𝑀 ∨· 𝑅
𝑀 ≤ 𝑈 · 𝑏𝑀
𝑅 ≤ 𝑈 · 𝑏𝑅
𝑏𝑀 + 𝑏𝑅 ≤ 1

Table 4.2: Mapping of rank constraints to ILP constraints.
𝑈 is a constant upper bound on 𝑀 and 𝑅.

Rank equality constraints (|𝜏1| � |𝜏2|) are already linear and added to the ILP directly
(with � simply replaced by standard equality). Recall that shape rank disjunction
constraints (𝑀 ∨· 𝑅) are satisfied by a rank substiution 𝑠r when 𝑠r(𝑀) = 0 or 𝑠r(𝑅) = 0.
To encode this constraint in the ILP, binary variables 𝑏𝑀 and 𝑏𝑅 are introduced where
𝑀 = 0 if 𝑏𝑀 = 0 and, analogously, 𝑅 = 0 if 𝑏𝑅 = 0. The relationship between 𝑏𝑀 and
𝑀 is enforced by the constraint 𝑀 ≤ 𝑈 · 𝑏𝑀 where𝑈 is a constant global upper bound
on all rank variables (and analogously for 𝑏𝑅 and 𝑅). The constraint 𝑏𝑀 + 𝑏𝑅 ≤ 1 then
enforces that one of 𝑏𝑀 , 𝑏𝑅 is 0 and hence that either 𝑀 or 𝑅 is 0.

In correspondence with our desire to insert the minimal number of maps and reps
necessary (Rule 1), the objective of the ILP is to minimize the sum of all the rank
variables in flexible function application annotations (△ (𝑀, 𝑅)) of an expression; this
corresponds to minimizing size(𝑠r , |𝐶|)where 𝑠r is the solution of the ILP. To illustrate,
Figure 4.10 shows how the rank ILP is generated for the expression sum (length 𝑥𝑠𝑠),
where 𝑥𝑠𝑠 is a matrix.

A rank constraint set |𝐶| is ambiguous at size 𝑘 where 𝑘 is the minimal solution size
if and only if its corresponding ILP has multiple solutions; ambiguity of constraint set
at the minimal size can therefore be detected by enumerating two distinct solutions to
the ILP with the same minimal size; this can be accomplished by adding constraints to
enforce a second solution to be distinct from the first but with the same size.

4.6.5 Constraint Set Solving
Our constraint solving algorithm Solve is shown in Figure 4.11 and uses rank analysis
and conventional type unification to find a satisfier 𝑠 of a constraint set 𝐶. If Solve(𝐶)
succeeds, it returns a substitution 𝑠 such that 𝑠 satisfies 𝐶 and hence illustrates how to

64 CHAPTER 4. AUTOMAP

Γ ⊢ length : []𝛼→ int ∥ ∅
Γ ⊢ 𝑥𝑠𝑠 : [][]int ∥ ∅ 𝐶1 = {𝑀1 ∨· 𝑅1 , []

𝑀1 []𝛼 � []
𝑅1 [][]int}

Γ ⊢ length 𝑥𝑠𝑠 △ (𝑀1 , 𝑅1) :
[]𝑀1 int ∥ 𝐶1

C-App

Γ ⊢ sum : []int→ int ∥ ∅ 𝐶2 = {𝑀2 ∨· 𝑅2 , []
𝑀2 []int � []

𝑅2 []𝑀1int} ∪ 𝐶1

Γ ⊢ sum (length 𝑥𝑠𝑠) △ (𝑀2 , 𝑅2) :
[]𝑀2 []𝑀1 int ∥ 𝐶2

C-App

(a) Typing derivation for sum (length 𝑥𝑠𝑠) . It is assumed
that sum : []int → int ∈ Γ, length : ∀𝛼. []𝛼 → int ∈ Γ,
and 𝑥𝑠𝑠 : [][]int ∈ Γ; the derivations for these terms (i.e.,
applications of C-Var and C-Inst) have be omitted for brevity.

|𝐶2| =


𝑀1 ∨· 𝑅1 ,
𝑀1 + 1 + 𝛼 � 𝑅1 + 2,
𝑀2 ∨· 𝑅2 ,
𝑀2 + 1 � 𝑅2 +𝑀1


(b) The associated rank constraint set of 𝐶2 from Figure 4.10a.

minimize 𝑅1 +𝑀1 + 𝑅2 +𝑀2
subject to

𝑀1 ≤ 𝑈 · 𝑏𝑀1

𝑅1 ≤ 𝑈 · 𝑏𝑅1

𝑏𝑀1 + 𝑏𝑅1 ≤ 1
𝑀1 + 1 + 𝛼 = 𝑅1 + 2

𝑀2 ≤ 𝑈 · 𝑏𝑀2

𝑅2 ≤ 𝑈 · 𝑏𝑅2

𝑏𝑀2 + 𝑏𝑅2 ≤ 1
𝑀2 + 1 = 𝑅2 +𝑀1

(c) The ILP corresponding to |𝐶2|
in Figure 4.10b. All variables
are additionally constrained to
be non-negative (e.g., 0 ≤ 𝑅1);
these constraints are omitted for
brevity.

Figure 4.10: ILP generation for sum (length 𝑥𝑠𝑠). One solution sets 𝑏𝑀1 ↦→ 1, 𝑀1 ↦→ 1 and
all other variables to 0, corresponding to the elaboration sum (map length 𝑥𝑠𝑠). This ILP is
ambiguous, the other size 1 solution sets 𝛼 ↦→ 1, 𝑏𝑅2 ↦→ 1, 𝑅2 ↦→ 1 and all other variables to 0,
corresponding to the elaborated expression sum (rep (length 𝑥𝑠𝑠)). The 𝛼 assignment can be
understood as the minimal rank of the type that a satisfying type substitution 𝑠t of 𝑠r(𝐶) must
assign to 𝛼; in the first elaboration, 𝑠t(𝛼) = int, in the second, 𝑠t(𝛼) = []int.

realize the C-Def rule of Figure 4.7 into a practical type system (by providing a means
of finding the satisfier 𝑠 in its premises). Note that Unify on line 11 of the procedure
is standard structural type unification as in [71], except it ignores the now-trivial zero-
rank disjunction constraints (which only contain integers, not rank variables, after 𝑠r is
applied).

Given a constraint set 𝐶 and a satisfying rank substitution 𝑠r of |𝐶|, the constraint
set 𝑠r(𝐶) is a closure of 𝐶; that is, all of its rank variables have been instantiated with
integral ranks. Hence, the constraint set 𝑠r(𝐶) on line 10 of the Solve procedure is
closed.

If 𝐶 is satisfiable, so must be 𝑠r(𝐶) and a satisfying type substitution 𝑠t can be found
via standard syntactic type unification. This means that the substitution 𝑠t ◦ 𝑠r—where
𝑠t is returned by Unify—is a satisfier of the original constraint set 𝐶. Propositions 6
and 7 show that every satisfier of 𝐶 can be found in this manner; their full proofs can
be found in appendix A.

Proposition 6. If 𝑠 satisfies 𝐶, there exists a rank substitution 𝑠r that satisfies |𝐶| and there

exists a closed type substitution 𝑠t such that 𝑠|ftv(𝐶)∪frv(𝐶) = 𝑠t ◦ 𝑠r.

Proof Sketch. Follows by constructing a rank substitution 𝑠r defined by 𝑠r(𝑄) = 𝑠(𝑄) and
𝑠r(𝛼) = |𝑠(𝛼)|⊘ (where | · |⊘ works like | · | except it assigns type variables the rank 0 and
expects a closed argument) and a type substitution 𝑠t = 𝑠|ftv(𝐶). □

Proposition 7. If 𝐶 is satisfiable and 𝑠r satisfies |𝐶| then there is a closed type substitution 𝑠t
such that the substitution 𝑠 = 𝑠t ◦ 𝑠r satisfies 𝐶.

Proof Sketch. Since 𝐶 is satisfiable, a satisfier 𝑠 for it exists; 𝑠t is constructed using both

4.7. TRANSFORMATION TO THE TARGET LANGUAGE 65

Procedure Solve
input : A constraint set 𝐶.
output: A satisfying substitution 𝑠.

1 |𝐶| ← construct the associated rank constraint set from 𝐶; // Section 4.6.2
2 𝐼 ← construct the corresponding ILP from |𝐶|; // Section 4.6.4
3 𝑠r ← solve 𝐼 using an ILP solver;
4 if 𝑠r then
5 𝐼′← add constraints to 𝐼 to ban solution 𝑠r and enforce a size of size(𝑠r , |𝐶|);
6 𝑠′r ← solve 𝐼′ using an ILP solver;
7 if 𝑠′r then
8 return ⊥; // |𝐶| is ambiguous; fail
9 else

10 return Unify(𝑠r(𝐶)) ◦ 𝑠r
11 else
12 return ⊥

Figure 4.11: Our algorithm for constraint solving.

𝑠r and 𝑠: 𝑠t(𝛼) = []
𝑠r(𝛼)basetype(𝑠(𝛼)) where basetype(𝑆𝜏) = basetype(𝜏) and is the

identity otherwise (that is, basetype strips all array dimensions). □

Note that Propositions 6 and 7 only hold because our language does not track sizes.
In a more general setting with sizes, given a satisfiable constraint set 𝐶 and a rank
substitution 𝑠r that satisfies |𝐶|, 𝑠r(𝐶)may not be satisfiable due to size mismatches.

4.7 Transformation to the Target Language

AM(𝑛) = 𝑛,

AM(𝑣) = 𝑣,

AM(𝑥) = 𝑥,

AM(𝜆𝑥. 𝑒) = 𝜆𝑥.AM(𝑒),

AM([𝑒1 , . . . , 𝑒𝑚]) = [AM(𝑒1), . . . ,AM(𝑒𝑚)],
AM(𝑒1 𝑒2 △ (𝑛M , 𝑛R)) = map𝑛M AM(𝑒1) (rep𝑛R AM(𝑒2)),
AM(map 𝑒1 𝑒2) = map AM(𝑒1) AM(𝑒2),
AM(rep 𝑒) = rep AM(𝑒),
AM(def 𝑓 𝑥 = 𝑒 ; 𝑝) = def 𝑓 𝑥 = AM(𝑒) ; AM(𝑝).

Figure 4.12: The AM transformation from the internal language to the target language; note that
𝑛M , 𝑛R ∈ N.

C-Def dispatches the constraint sets of each top-level definition and applies a satis-
fying substitution to each top-level body. This replaces the rank variables of the flexible
function applications (△ (𝑀, 𝑅)) in each top-level body with integral ranks . Hence, each
internal program typed via the C-Def judgment is closed and only contains integral
ranks at the flexible function annotation sites.

The job of the AM transformation is to elaborate these integral annotations
(△ (𝑛M , 𝑛R))—corresponding to implicit numbers of maps and reps—into explicit maps
and reps. That is, AM converts programs from the internal language into the target
language. It is defined in Figure 4.12.

Recall that the 𝑀 ∨· 𝑅 constraint in C-App forces one of 𝑀 or 𝑅 to be 0; hence at least
𝑛M or 𝑛R in the figure must be 0 and the expansion of 𝑒1 𝑒2 △ (𝑛M , 𝑛R)will result in either

66 CHAPTER 4. AUTOMAP

a map or a rep (or neither) but never both (in accordance with Rule 2 of Section 4.2.2).
Returning to the example from Table 4.1 (sqrt [1, 2, 3] △ (𝑀, 𝑅)), in Section 4.6.2

we found that the rank substitution 𝑠r = [𝑀 ↦→ 1, 𝑅 ↦→ 0] satisfied its rank constraint
set (this solution is also minimal and would be the same one returned by a solution to
the corresponding ILP formulation). Since the constraint set doesn’t feature any type
variables, the Unify call in Figure 4.11 will return an empty substitution and hence
the satisfier for the constraint set is simply the substitution 𝑠 = 𝑠r.7 The substitution
is applied to the expression to obtain sqrt [1, 2, 3] △ (1, 0), which is the form the
expression would take in the conclusion of the C-Def rule. To now convert the internal
expression sqrt [1, 2, 3] △ (1, 0) to the target language, we simply apply the AM
transformation:

AM(sqrt [1, 2, 3] △ (1, 0)) = map1 AM(sqrt) (rep0 AM([1, 2, 3]))
= map sqrt [1, 2, 3].

4.7.1 Well-Typedness
Proposition 9 shows the Well-Typedness property from Section 4.2.3. That is, if 𝑝 is a
well-typed program in the internal language then AM(𝑝) is a well-typed program in
the target language. First, an equivalent property is needed for expressions.

Proposition 8 (Well-Typedness for Expressions). If Γ ⊢ 𝑒 :𝑆 𝜎 ∥ 𝐶 and 𝑠 is a satisfier of

𝐶, then 𝑠(Γ) ⊢ AM(𝑠(𝑒)) : 𝑠(𝑆 𝜎)

Proof Sketch. Follows by induction on over the typing derivation. The core part of the
proof is the C-App case (i.e., for expressions of the form 𝑒1 𝑒2 △ (𝑀, 𝑅)), where we exploit
the fact that 𝑠 is a satisfier of 𝐶 and hence can conclude that either 𝑀 = 0 or 𝑅 = 0 and
case on each of these possibilities. □

Proposition 9 (Well-Typedness). If Γ ⊢ 𝑝 : 𝜎 then Γ ⊢ AM(𝑝) : 𝜎.

Proof Sketch. Straightforward induction over the typing derivation, using Proposition 8.
□

Appendix A features proofs for the above propositions.

4.7.2 Backwards Consistency
In this section, we show that rank analysis correctly reconstructs a removed explicit
map or rep from an expression. To talk about specific maps or rep in a program, we
introduce internal language contexts with the following grammar:

𝒦 ::= ⟨·⟩ | 𝒦 𝑒 △ (𝑀, 𝑅) | 𝑒 𝒦 △ (𝑀, 𝑅) | [𝑒 , . . . , 𝑒 ,𝒦 , 𝑒 , . . . , 𝑒]
| rep 𝒦 | map 𝒦 𝑒 | map 𝑒 𝒦

Figure 4.13: Internal language contexts grammar.

If 𝑒 is an explicit map or rep in some context 𝒦 , the relation 𝒦⟨𝑒⟩ ≺rem 𝒦⟨𝑒′⟩
says that 𝒦⟨𝑒′⟩ is semantically equivalent equivalent expression to 𝒦⟨𝑒⟩, shown in
Figure 4.14 below.

7Since expressions only contain rank variables—and not type variables—this technically doesn’t matter
and applying either 𝑠 = 𝑠t ◦ 𝑠r (where 𝑠t is returned by Unify) or just 𝑠r yields the same result.

4.7. TRANSFORMATION TO THE TARGET LANGUAGE 67

𝒦⟨𝑒⟩ ≺rem 𝒦⟨𝑒′⟩

𝑀, 𝑅 fresh
𝒦⟨map 𝑒1 𝑒2⟩ ≺rem 𝒦⟨𝑒1 𝑒2 △ (𝑀, 𝑅)⟩

Rem-Map
𝑀, 𝑅 fresh

𝒦⟨rep 𝑒⟩ ≺rem 𝒦⟨(𝜆𝑥. 𝑥) 𝑒 △ (𝑀, 𝑅)⟩
Rem-Rep

Figure 4.14: The removal relation.

The following proposition says that we can remove a map or a rep from a well-typed
expression and obtain a well-typed expression. Additionally, their constraint sets are
in correspondence in the sense that a rank substitution that appropriately assigns the
newly-introduced rank variables (in the flexible function application that replaced the
map or rep) can be applied to make the two constraint sets equivalent.

Proposition 10 (Removal Well-Typedness). If𝒦⟨𝑒⟩ ≺rem 𝒦⟨𝑒′⟩ and Γ ⊢ 𝒦⟨𝑒⟩ :𝑆 𝜎 ∥ 𝐶
then there exists 𝑆′, 𝜎′, and 𝐶′ such that

(a) Γ ⊢ 𝒦⟨𝑒′⟩ :𝑆′ 𝜎′ ∥ 𝐶′.

(b) If 𝑠r satisfies |𝐶|, then there exists 𝑠′r such that 𝑠r ◦ 𝑠′r satisfies |𝐶′|.

(c) 𝑠r(𝐶) ≃ (𝑠r ◦ 𝑠′r)(𝐶′).

Proof Sketch. By induction over 𝒦 . The meat of the proof is the case where 𝒦 = ⟨·⟩,
which proceeds by casing on the removal relation (Rem-Map or Rem-Rep). For both
cases, part (a) follows by applying C-App appropriately, (b) by constructing 𝑠′r to assign
the introduced rank variables from the new flexible function application to correctly
reconstruct either the removed map or rep, and (c) by the fact that the introduced rank
disjunction constraints (𝑀 ∨· 𝑅) become trivial after application of 𝑠′r (wherein they
reduce to either 1 ∨· 0 or 0 ∨· 1). The remaining cases for 𝒦 follow by straightforward
application of the inductive hypothesis. □

Proposition 11 states the Backwards Consistency property of Section 4.2.3— namely
that when a map or rep is removed, and the resulting program is unambiguous, then
the elaboration of that program is equivalent to the original program with the explicit
map or rep.

Proposition 11 (Backwards Consistency). If 𝒦⟨𝑒⟩ ≺rem 𝒦⟨𝑒′⟩, Γ ⊢ 𝒦⟨𝑒⟩ :𝑆 𝜎 ∥ 𝐶,

and 𝑠r is unambiguous at size 𝑘 for |𝐶|, then there exists 𝑆′, 𝜎′, 𝐶′, 𝑠′r such that

Γ ⊢ 𝒦⟨𝑒′⟩ :𝑆′ 𝜎′ ∥ 𝐶′ and 𝑠′r is unambiguous at size 𝑘 + 1 for |𝐶′| with AM(𝑠r(𝒦⟨𝑒⟩)) =
AM(𝑠′r(𝒦⟨𝑒′⟩)).

Proof Sketch. By induction over 𝒦 ; the 𝒦 = ⟨·⟩ case is the most interesting, and we
proceed by casing on the removal relation. In each case, we exploit the unambiguity
of 𝑠′r to conclude that 𝑠′r = 𝑠r ◦ 𝑠′r where 𝑠r is as constructed in the relevant cases of the
proof of Proposition 10, from which we obtain the required equality by the definition
of AM. □

It should be noted that as stated proposition 11 isn’t as strong as we’d like— instead
of 𝑆′, 𝜎′, 𝐶′, 𝑠′r being existentially quantified in the above proposition, they should be
universally quantified. While we conjecture this to be true, we leave its proof to future
work.

68 CHAPTER 4. AUTOMAP

4.7.3 Forwards Consistency

In this section, we show that an inferred map or rep can always be made explicit. In
analog to ≺rem , we introduce a new relation 𝒦⟨𝑒⟩ ≻add 𝒦⟨𝑒′⟩ that says that 𝒦⟨𝑒′⟩ is
a semantically equivalent equivalent expression to 𝒦⟨𝑒⟩, shown in Figure 4.15 below.
Note that, unlike ≺rem , ≻add only operates on closed expressions (i.e., expressions
post rank analysis).

𝒦⟨𝑒⟩ ≻add 𝒦⟨𝑒′⟩

𝒦⟨𝑒1 𝑒2 △ (𝑛M + 1, 𝑛R)⟩ ≻add 𝒦⟨(map 𝑒1) 𝑒2 △ (𝑛M , 𝑛R)⟩
Add-Map

𝒦⟨𝑒1 𝑒2 △ (𝑛M , 𝑛R + 1)⟩ ≻add 𝒦⟨𝑒1 (rep 𝑒2) △ (𝑛M , 𝑛R)⟩
Add-Rep

Figure 4.15: The add relation.

Proposition 12 (Forwards Consistency). If 𝒦⟨𝑒⟩ ≻add 𝒦⟨𝑒′⟩ then AM(𝒦⟨𝑒⟩) =

AM(𝒦⟨𝑒′⟩).

Proof Sketch. Straightforward induction over 𝒦 . □

4.8 Implementation

We have implemented Automap in a compiler for the functional array language Futhark.
The implementation consists of four phases, shown in Figure 4.16 below.

Constraint generation ILP solving Residual solving Elaboration

Figure 4.16: The four phases of Automap in the implementation.

4.8.1 Constraint Generation

This part of the implementation largely follows the structure given in Section 4.5: each
top-level definition is type checked individually, application nodes are annotated with
the equivalent of the△ (𝑀, 𝑅,) annotations in Section 4.5,8 and constraints are collected.

4.8.2 ILP Solving

The implementation mostly follows Section 4.6.5, utilizing the GNU Linear Program-
ming Kit9 to solve the ILPs. One notable difference from Section 4.6.5 is that the ILP is

8Actually, in the implementation, applications are annotated with triples of the form △(𝑀, 𝑅, 𝑆) where
the third component is the frame, which circumvents the problem that the Futhark compiler does not have
the facility to track the frame at the type level.

9https://www.gnu.org/software/glpk/glpk.html

4.8. IMPLEMENTATION 69

modified to avoid counting induced reps, which are reps that are required as a conse-
quence of previous maps. For example, map (𝜆𝑦. 𝑥𝑠 · 𝑦) 𝑦𝑠 (noting the existent map is
an explicit one) can be elaborated as

map (𝜆𝑦. map (·) 𝑥𝑠 (rep 𝑦)) 𝑦𝑠 or map (𝜆𝑦. map (·) 𝑥𝑠 𝑦) (rep 𝑦𝑠),

where 𝑥𝑠 and 𝑦𝑠 are vectors. In the first example, the rep is induced by the inner map.
In the second, the rep is required because of the outer map, which is explicit and hence
the rep is non-induced. Both of these elaborations are associated with size 2 rank
substitutions and hence the type checker would reject map (𝜆𝑦. 𝑥𝑠 · 𝑦) 𝑦𝑠 as ambiguous.
However, induced reps can always be removed by rep fusion; that is, pushing the rep
down the map nest. Doing so for the first example yields

map (𝜆𝑦. map (𝜆𝑥. 𝑥 · 𝑦) 𝑥𝑠) 𝑦𝑠,

which has size 1 and is the only elaboration of map (𝜆𝑦. 𝑥𝑠 · 𝑦) 𝑦𝑠 with size 1 and hence is
unambiguous. Disambiguation by rep fusion in this manner tends to also better align
with programmer intent by virtue of corresponding with a smaller solution. Because
frames are the concatenation of all previous map shapes in a series of applications,
at each application, the number of non-induced reps can be recovered by subtracting
the rank of the current frame from the total number of reps. More precisely, if 𝑒1 is a
function with frame 𝑆1, then the non-induced reps for the flexible function application
𝑒1 𝑒2 △ (𝑀, 𝑅) is given by max(0, |𝑅|− |𝑆1|). In this scheme, each application contributes
𝑀 +max(0, |𝑅| − |𝑆1|) to the ILP’s objective; the linearization of max(0, |𝑅| − |𝑆1|) adds
a few additional constraints and two additional ILP variables. We found only counting
non-induced reps in the ILP objective to greatly diminish the frequency of ambiguity
in practice (although it raises issues in other cases, see Section 4.10).

To check for ambiguity, we discriminate on the binary variables used to enforce the
𝑀 ∨· 𝑅 constraints; see section 4.10.3 for more details.

4.8.3 Residual Solving

The interaction of Automap with other nonstandard type system features is challenging.
In particular, Futhark supports size-dependent types, where array sizes are tracked in the
type system [7], and functions can impose size constraints. For example, zip requires
that the input arrays have the same length. Automap is completely oblivious to size
types, and Section 4.9 contains an example where the elaborated program is ill-typed
when considering sizes.

Concretely, we first infer ground types via the first two phases of Figure 4.16, where
the specific sizes of arrays are not tracked, but only their rank. Then, in the residual
solving phase, we perform size-type inference on the resulting elaborated program
as in [7], using the Automap-inferred types as a starting point. This stratification is
largely for simplicity, as the size-dependent type system has features that are difficult
to integrate in our constraint language. For example, when if branches return arrays
of differing size, a new “existential size” is implicitly created and used to assign a type
to the expression. However, such a size mismatch can only be detected after the array
ranks are known. It is perhaps possible to encode this situation as a form of conditional
rule in the vein of [117], but we did not find it necessary in order to obtain a useful
system.

70 CHAPTER 4. AUTOMAP

def main [nK][nX]
(kx: [nK]f32) (ky: [nK]f32) (kz: [nK]f32)
(x: [nX]f32) (y: [nX]f32) (z: [nX]f32)
(phiR: [nK]f32) (phiI: [nK]f32)

: ([nX]f32, [nX]f32) =
let phiM = map2 (𝜆r i → r*r + i*i) phiR phiI
let as = map3 (𝜆x_e y_e z_e →

map (2*pi*)
(map3 (𝜆kx_e ky_e kz_e →

kx_e*x_e + ky_e*y_e + kz_e*z_e)
kx ky kz))

x y z
let qr = map (𝜆a → sum(map2 (*) phiM (map cos a))) as
let qi = map (𝜆a → sum(map2 (*) phiM (map sin a))) as
in (qr, qi)

(a) mri-q with explicit maps.

def main [nK][nX]
(kx: [nK]f32) (ky: [nK]f32) (kz: [nK]f32)
(x: [nX]f32) (y: [nX]f32) (z: [nX]f32)
(phiR: [nK]f32) (phiI: [nK]f32)

: ([nX]f32, [nX]f32) =
let phiM = phiR*phiR + phiI*phiI
let as = 2*pi*(kx*transpose (rep x)

+ ky*transpose (rep y)
+ kz*transpose (rep z))

let qr = sum (cos as * phiM)
let qi = sum (sin as * phiM)
in (qr, qi)

(b) mri-q with implicit maps.

Figure 4.17: Two versions of the mri-q benchmark from the Parboil benchmark suite, imple-
mented in Futhark. On the left, the original version with explicit maps, and on the right the
version with Automap.

4.8.4 Elaboration
In the final phase, flexible function applications are elaborated into maps and reps.
The phase operates similarly to the AM transformation of Section 4.7 except only non-
induced reps are elaborated due to rep fusion (i.e., pushing reps to the bottom of the
elaborated map nest).

4.9 Evaluation
We evaluate the practical merits of Automap on a collection of Futhark programs ported
from the benchmark suites Parboil [109], PBBS [2], FinPar [3], Accelerate [19], and
Rodinia [20]. This collection comprises 8600 source lines of code spread across 67 files.
We investigate the following questions:

1. How many maps do we eliminate through Automap?

2. Why have the remaining maps not been eliminated?

3. How much does Automap slow down type checking?

The reason we focus on map and not rep is that implicit maps are far more common, and
implicit reps tend to occur as a consequence of an implicit map in the same application.
The results are quantified in Figure 4.19.10

In principle, we could expect that any expression map 𝑓 𝑥 could be replaced with
𝑓 𝑥, as Automap makes the map implicit. In practice, this can lead to an ambiguous
or ill-typed program. Even when it does not, the smallest Automap solution might be
semantically different. Consider a term such as

map (𝜆𝑥. map (·𝑥) 𝑦𝑠) 𝑥𝑠,

corresponding to an outer product of the vectors 𝑥𝑠 and 𝑦𝑠 producing a matrix. Re-
moving the innermost map produces

map (𝜆𝑥. 𝑥 · 𝑦𝑠) 𝑥𝑠,
10We have prepared an artifact for reproduction of these results.

4.9. EVALUATION 71

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 4 16 64 256 1024 4096 16384

Fr
a
ct

io
n

Size of ILP problem

Figure 4.18: Proportion of ILP problems that
have less than some given number of con-
straints. Note that almost all problems contain
at most 1024 constraints.

Number of programs: 67

Change in lines of code: 8623⇒ 8517

Change in maps: 467⇒ 213

Largest ILP size: 28104 constraints

Median ILP size: 18 constraints

Mean ILP size: 121 constraints

Mean type checking slowdown: 2.50×

Figure 4.19: Changes in various metrics result-
ing from the addition of Automap to the lan-
guage and type checker. There is no change to
application run-time performance.

which Automap handles as expected, but further removing the outer map leads to

(𝜆𝑥. 𝑥 · 𝑦𝑠) 𝑥𝑠 = 𝑥𝑠 · 𝑦𝑠,

which is elaborated by Automap to map (·) 𝑥𝑠 𝑦𝑠, yielding a vector. Further, this
program also requires that 𝑥𝑠 and 𝑦𝑠 have the same size, which was not the case in the
original expression—meaning it may no longer be well-typed under size-dependent
typing (Section 4.8.3).

Even when Automap elaboration is unambiguous, removing maps can decrease
readability. This is of course a subjective judgment, but we have only removed maps
when we judge that this results in an increase in readability. Unsurprisingly, this is
often the case for linear algebra expressions.

Figure 4.17 shows an example based on the mri-q benchmark from Parboil. The
original program is shown in Figure 4.17a, with a total of ten instances ofmap, somewhat
cluttering the program. The modified program on Figure 4.17b contains no explicit
maps, and particularly the computation of qr and qi is much more concise. This
program implements a single mathematical formula, and so represents a “best case”
scenario for Automap.

4.9.1 Quantifying maps
The unmodified benchmarks contain 467 applications of the map function and its vari-
ants map2 up to map5. After manual rewrites to take advantage of Automap where
appropriate, 213 applications are left, corresponding to a 54% reduction.

Futhark supports higher-order functions, and so programmers may define map
variants that are not included in the above count. However, this is not a common
programming style in the Futhark benchmark suite, and so we consider our count to be
accurate.

The programming style in the benchmark suite already uses type annotations for
most top level functions, and we did not find it necessary to add any annotations in
order to resolve ambiguities.11

11Type annotations refine the constraints in the ILP and can thereby eliminate additional solutions.

72 CHAPTER 4. AUTOMAP

4.9.2 Impact on Type Checking

Our Automap-enabled type checker is unoptimized, but still shows the practicality of
our approach. For most programs, a little over half of the total time spent on type
checking is taken up by rank analysis; specifically on constructing and solving ILP
problems. Compared to the unmodified type checker, we see less than 3 × slowdown
on most programs. The outlier is myocyte, which is about 13 × slower. This program
contains a dense 437 line function with many arithmetic operations. As each application
gives rise to six ILP variables and associated constraints, Automap produce an ILP
program with 28104 constraints, which is slow to solve. This could be optimized by not
generating constraints for applications whose implicitmaps andreps can be determined
locally at the application site (as is commonly the case with arithmetic operations). The
distribution of ILP sizes for the entire benchmark suite is shown in Figure 4.18.

4.9.3 Programmer Experience

In practice, we found Automap to be unsurprising: if a program is unambiguous, it
generally elaborated as we expected. Since real programs tend to sufficiently constrain
rank polymorphic function applications to be unambiguous, ambiguity in practice is
relatively rare.

It should also be emphasized that the system is both transparent and flexible: any
program can always be elaborated into a version with all maps and reps explicit, so
programmers can always validate that a program elaborates as they intended. Program-
mers can also use Automap to whatever degree they wish by omitting all maps/reps
(up to ambiguity), only some, or none.

Handling ambiguity in elaboration systems like Automap is straightforward: signal
an error and report each possible elaboration. When there are no solutions to the ILP
(a consequence of an ill-typed program), the debugging work flow is reminiscent of
debugging in any ML-style language with type inference; instead of just inserting type
annotations (i.e., making implicit type annotations explicit) to narrow down the location
of the bug, maps and reps are also inserted to make these constructs explicit as well.

4.10 Future Work

4.10.1 Higher-order Functions

While Automap works in the presence of higher-order functions, their use sometimes
results in ambiguity. As an example, suppose we have a polymorphic function pipe :
𝛼 → (𝛼 → 𝛽) → 𝛽 (the prefix form of ⊲) and a function f : int → int, the term
pipe (indices 𝐴) f is ambiguous, with the following elaborations:

1. map pipe (indices 𝐴) (rep f),

2. pipe (indices 𝐴) (rep f).

These elaborations have the same size, due to not counting induced reps (Section 4.8.2).
Piping is a common pattern, so better interaction with Automap is desirable—possibly
by refining the cost function to count induced reps in those cases where the result is
otherwise ambiguous.

4.11. RELATED WORK 73

4.10.2 Solving Constraints Locally
As mentioned in Section 4.9.2, there are also opportunities to reduce the size of the ILP
program by eliding constraints for applications that can be locally solved.

4.10.3 Efficient Ambiguity Checking
To detect ambiguity we add constraints to the ILP to ban an initial solution and look for
a second of the same size. If {𝑀0 , 𝑅0 , . . . , 𝑀𝑛 , 𝑅𝑛} are the rank variables of an ILP and 𝑠r
and 𝑠′r are two solutions of the ILP, we require that

∑
𝑄∈{𝑀0 ,𝑅0 ,...,𝑀𝑛 ,𝑅𝑛}|𝑠r(𝑄)− 𝑠′r(𝑄)| ≥ 1.

This constraint can be linearlized [113], but requires introducing new variables and
constraints to the ILP.

Alternatively, rather than discriminating on the rank variables themselves, the bi-
nary variables 𝑏𝑅, 𝑏𝑀 used to encode the 𝑀 ∨· 𝑅 constraint (see section 4.6.4) may be
discriminated on instead:

∑
𝑄∈{𝑀0 ,𝑅0 ,...,𝑀𝑛 ,𝑅𝑛}|𝑠r(𝑏𝑄) − 𝑠′r(𝑏𝑄)| ≥ 1. This constraint can

be linearized without introducing any new variables nor constraints (by exploiting the
fact that 𝑏𝑄 is binary) because it’s equivalent to∑

𝑄∈{𝑀0 ,𝑅0 ,...,𝑀𝑛 ,𝑅𝑛}
𝑠r(𝑏𝑄)=0

𝑠′r(𝑏𝑄) +
∑

𝑄∈{𝑀0 ,𝑅0 ,...,𝑀𝑛 ,𝑅𝑛}
𝑠r(𝑏𝑄)=1

1 − 𝑠′r(𝑏𝑄) ≥ 1.

We conjecture that any rank constraint set |𝐶| that is ambiguous at size 𝑘 (where 𝑘 is
minimal) must have two distinct solutions 𝑠r and 𝑠′r (both with size 𝑘) such that∑

𝑄∈{𝑀0 ,𝑅0 ,...,𝑀𝑛 ,𝑅𝑛}
|𝑠r(𝑏𝑄) − 𝑠′r(𝑏𝑄)| ≥ 1,

if each 𝑏𝑄 is additionally constrained with 𝑏𝑄 ≤ 𝑄, but we’ve been unable to find a
proof (nor counter-example).

Another unexplored avenue to detect ambiguity is to eschew adding constraints to
the ILP to ban solutions altogether. Instead, the ILP solver itself can be modified to
further explore the solution space after finding an initial solution [26, 27].

4.11 Related Work

4.11.1 Data Parallelism
NumPy [43] is likely the most popular rank-polymorphic programming system in cur-
rent use, and Automap largely targets the same kinds of applications as NumPy. One
important difference is that NumPy’s implicit rank-polymorphic behavior cannot be
manually or systematically elaborated—while guiding principles exist,12 each NumPy
function has complete freedom to inspect the ranks and shapes of array arguments and
make arbitrary control flow decisions. In contrast, anything expressible with Automap
can always be rewritten with explicit maps and reps at application sites, without any
change in run-time performance. As a minor difference, NumPy also allows broad-
casting where a unit dimension is implicitly expanded as needed to make otherwise
rank-compatible operands have the same size.

Originating from Iverson’s scalar multiple [56], APL only allows broadcasting (or
more properly, scalar extension [55]) of scalar elements, and does not for example allow

12https://numpy.org/doc/stable/user/basics.broadcasting.html

74 CHAPTER 4. AUTOMAP

a vector to be added to a matrix, which is allowed in Automap and NumPy. Whereas
APL is traditionally a dynamically-typed language, approaches exist to infer scalar
extensions and map nests statically [40, 29]. The limitation to scalars also exist in work
by Thatte [112], which uses subtyping for inferring coercions for adjusting function
applications to match call sites, although Thatte does support higher order functions.

Single Assignment C is perhaps the most well-developed statically typed rank-
polymorphic language, although it does not support parametric polymorphism or
higher-order functions. It does however support a particularly flexible form of rank
polymorphism, including rank specialization, which provides a powerful form of con-
trol flow [103, 102]. Also related to this work is the work on Remora [107], which allows
for expressing many aspects of APL, including rank-polymorphism, but in an explicitly
typed context. In the context of Remora, work has been proposed for using constraint
solving for type checking rank-polymorphic programs [106]. Gibbons has shown how
to encode rank polymorphism in Glasgow Haskell through the use of Naperian func-
tors [37], which also supports richer structures than just arrays. One limitation of
Gibbons’ approach is that the functorial map operation always operates the full shape,
whilst the present work allows only some dimensions of a multidimensional array to
be mapped. The encoding also requires a very rich type system.

4.11.2 Type Systems and Type Inference

The Hindley-Damas-Milner type system [50, 71, 24] has long been used as the theoretical
foundation for a class of programming languages with polymorphic types and complete
type inference, including for the OCaml and Haskell programming languages. Over the
years, many extensions to the HM system have been proposed notably HM(X) which
is a general framework where HM is parameterized by constraints [81]. The original
HM type system supports local let-generalization, which means that polymorphic types
are inferred not only for top-level functions, but for every let-binding. However, local
let-generalization leads to a number of problems, most famously that it is unsound in
the presence of mutable reference cells [35]. The trouble with local let-generalization
has led a number of papers to propose that “let should not be generalized” [116, 117].
While local let-generalization causes many difficulties, a study of the Haskell ecosystem
found that local let-generalization is rarely used, and when used, the programs are often
straightforward to refactor. In this thesis, and in Futhark in general, generalization is
only supported at the top-level.

There is a large body of related work on constraint-based type systems [110, 33,
58], including work on implementing type classes [89]. Whereas Automap is based
on a constraint-based type system, constraints are local to function definitions, which
simplifies the type system significantly compared to much other work.

4.11.3 Implicit Program Constructs

Implicit program constructs, like Automap, are found in several programming lan-
guages. Implicit parameters are known from Haskell [65] and Scala [82] where in the
latter they are used to support type classes [83, 82]. A large-scale study of real-world
Scala code found that implicit parameters are widely showing that programmers want
to use implicit constructs to make their code shorter and more concise [61]. An overview
of implicit programming constructs is provided by [57].

4.12. CONCLUSIONS 75

4.12 Conclusions
We have presented an extension of an ML-style type system that supports a limited form
of rank polymorphism, while still retaining support for parametric polymorphism (with
top-level let-generalization) and higher-order functions. The type inference algorithm is
based on generating and solving an ILP problem. We have formally proven the sound-
ness and other properties of the system. Through an evaluation based on 8600 lines
of code, we have demonstrated that the type system results in a significant reduction
in the amount of explicit maps, arguably a significant increase in readability of parallel
expressions, and that the ILP problems can be solved in reasonable time.

Data-Availability Statement
An artifact of our Automap prototype in Futhark that reproduces the benchmarking
results of Section 4.9 is available on Zenodo [100].

Chapter 5

Future Third Things

Chapters 3 and 4 show the utility of a structured, high-level approach to scientific
language design. But AD and broadcasting are just two tools in a much larger toolbox—
there’s plenty of room for improvement on existing tools, as well as new tools waiting
to be discovered.

There are many ways to improve AD; one key area is performance. Dense primal
functions often have sparse Jacobians or Hessians [39]—optimizations that exploit this
sparsity could significantly speed up AD systems, including in Futhark. Static sparsity
analyses in existing work are conservative [111], and there is also room to investigate new
analyses that exploit the parallel semantics of Futhark’s SOACs. Dynamic approaches
also exist, which compute sparsity patterns and apply graph coloring techniques at
runtime to compress Jacobians [36, 10], but they incur significant overhead that may
degrade performance. Perhaps a hybrid approach that combines static and dynamic
approaches might offer a better balance.

Another challenge in making AD more robust is the principled handling of
non-differentiability. Contemporary systems do not discriminate between programs
and silently—but incorrectly—differentiate non-differentiable functions, producing
garbage. For example, if-then-else blocks can introduce discontinuities in the pro-
gram, and some functions (e.g.,

√
𝑥 at 0 ∈ R) aren’t differentiable everywhere. What

should an AD implementation do when invoked on programs with non-differentiable
expressions? Could compiler analyses detect non-differentiability and warn the pro-
grammer? Recent work suggests that AD systems can return correct derivatives for
differentiable parts of many non-differentiable functions [64, 13], but the question of
how the system should—from the perspective of the language designer—robustly han-
dle non-differentiable points while permitting differentiation of differentiable points
(and how to distinguish and detect between the two) remains.

Accumulators were required to realize efficient AD for map (see Section 3.4.5) in
Futhark. Accumulators are realized as an internal compiler construct and kept hidden
from the user, but efficient accumulation of values has applications outside of an AD
context. How can this construct be exposed to the programmer? To ensure soundness,
accumulators in Futhark’s internals are checked using a simple linear type system. But,
unlike the IR, the source language is higher-order and polymorphic; soundly supporting
accumulators in this context would require a more sophisticated linear type system (or
perhaps an effect-based system). This also asks the broader question of what compiler
constructs should be exposed to the programmer and the trade-offs involved in making
them available.

76

77

Another possible extension to Futhark’s AD implementation includes making opti-
mization a first-class feature. In Julia, JuMP [28] endows Julia with first-class support
for optimization primitives, enabling programmers to succinctly express optimization
problems with these constructs. Futhark could be augmented with similar primitives,
backed by its AD pass. Such primitives could also drive new optimizations for AD that
are specific to the given optimization technique.

As for new tools in the proverbial toolbox, expanding Futhark with new backends
to target different types of hardware/accelerators is an interesting possibility. One such
example is the field-programmable gate array (FPGA), which is a type of programmable
hardware. FPGAs can be dynamically programmed to realize any arbitrary logical
circuit in actual hardware (within the constraints of the device). They are difficult
to program but offer unmatched potential performance/efficiency [63, 93]. Existing
work on compilation to hardware-description languages (which describe the circuits
that are synthesized onto an FPGA) spans from functional languages [5], to high-level
imperative code [62], to parallel frameworks like OpenCL [23]. Work on compiling
data-parallel languages (like Futhark) to FPGAs exists [14], but it’s unclear how to
performantly map a high-level nested-parallel program to an FPGA. Crucially, much of
Futhark’s existing analyses and optimizations target the limited amount of hardware
parallelism available on CPUs and GPUs, but these are a poor fit for FPGAs because
they can in principle support many levels of parallelism; new algorithms and analyses
are required.

The two things presented in this thesis demonstrate that (scientific) programming
benefits from well-defined and rigorous approaches to language design and implemen-
tation. Practitioners stand to benefit from a larger toolbox with a third thing (or more!)
in accordance with this ethos.

Bibliography

[1] Martín Abadi et al. “TensorFlow: A system for large-scale machine learning”.
In: 12th USENIX symposium on operating systems design and implementation (OSDI

16). 2016, pp. 265–283.
[2] Daniel Anderson et al. “The problem-based benchmark suite (PBBS), V2”. In:

Proceedings of the 27th ACM SIGPLAN Symposium on Principles and Practice of Paral-

lel Programming. PPoPP ’22. Seoul, Republic of Korea: Association for Computing
Machinery, 2022, pp. 445–447. isbn: 9781450392044. doi: 10.1145/3503221.
3508422. url: https://doi.org/10.1145/3503221.3508422.

[3] Christian Andreetta et al. “FinPar: A Parallel Financial Benchmark”. In: ACM

Trans. Archit. Code Optim. 13.2 (June 2016), 18:1–18:27. issn: 1544-3566.
[4] M. Araya-Polo and Laurent Hascoët. “Data Flow Algorithms in the

Tapenade Tool for Automatic Differentiation”. In: Proceedings of the Eu-

ropean Congress on Computational Methods in Applied Sciences and En-

gineering (ECCOMAS 2004). Ed. by P. Neittaanmäki et al. online
at http://www.mit.jyu.fi/eccomas2004/proceedings/pdf/550.pdf. Jyväskylä,
Finland: University of Jyväskylä, 2004. isbn: 951-39-1868-8.

[5] C.P.R. Baaĳ. “Digital circuit in CLaSH: functional specifications and type-
directed synthesis”. Undefined. eemcs-eprint-23939. PhD Thesis - Research UT,
graduation UT. Netherlands: University of Twente, Jan. 2015. isbn: 978-90-365-
3803-9. doi: 10.3990/1.9789036538039.

[6] John Backus. “The history of FORTRAN I, II, and III”. In: SIGPLAN Not. 13.8
(Aug. 1978), pp. 165–180. issn: 0362-1340. doi: 10.1145/960118.808380. url:
https://doi.org/10.1145/960118.808380.

[7] Lubin Bailly, Troels Henriksen, and Martin Elsman. “Shape-Constrained Array
Programming with Size-Dependent Types”. In: Proceedings of the 11th ACM SIG-

PLAN International Workshop on Functional High-Performance and Numerical Com-

puting. FHPNC 2023. Seattle, WA, USA: Association for Computing Machinery,
2023, 29â=C“41. isbn: 9798400702969. doi: 10.1145/3609024.3609412. url:
https://doi.org/10.1145/3609024.3609412.

[8] Atılım Günes Baydin et al. “Automatic Differentiation in Machine Learning: A
Survey”. In: J. Mach. Learn. Res. 18.1 (Jan. 2017), pp. 5595–5637. issn: 1532-4435.

[9] Gilbert Bernstein et al. Differentiating a Tensor Language. 2020. doi: 10.48550/
ARXIV.2008.11256. url: https://arxiv.org/abs/2008.11256.

[10] Christian Bischof et al. “Efficient Computation of Gradients and Jacobians by
Transparent Exploitation of Sparsity in Automatic Differentiation”. In: Optimiza-

tion Methods and Software 7 (1996), pp. 1–39.

78

https://doi.org/10.1145/3503221.3508422
https://doi.org/10.1145/3503221.3508422
https://doi.org/10.1145/3503221.3508422
https://doi.org/10.3990/1.9789036538039
https://doi.org/10.1145/960118.808380
https://doi.org/10.1145/960118.808380
https://doi.org/10.1145/3609024.3609412
https://doi.org/10.1145/3609024.3609412
https://doi.org/10.48550/ARXIV.2008.11256
https://doi.org/10.48550/ARXIV.2008.11256
https://arxiv.org/abs/2008.11256

BIBLIOGRAPHY 79

[11] Guy E. Blelloch. “Prefix sums and their applications”. In: 1990.
[12] Guy E. Blelloch et al. “Implementation of a portable nested data-parallel lan-

guage”. In: SIGPLAN Not. 28.7 (July 1993), pp. 102–111. issn: 0362-1340. doi:
10.1145/173284.155343. url: https://doi.org/10.1145/173284.
155343.

[13] Jérôme Bolte and Edouard Pauwels. “Conservative set valued fields, automatic
differentiation, stochastic gradient methods and deep learning”. In: Mathematical

Programming 188 (2021), pp. 19–51.
[14] Barry Bond et al. “Fpga circuit synthesis of accelerator data-parallel programs”.

In: 2010 18th IEEE Annual International Symposium on Field-Programmable Custom

Computing Machines. IEEE. 2010, pp. 167–170.
[15] Uday Bondhugula et al. “A Practical Automatic Polyhedral Parallelizer and

Locality Optimizer”. In: Proceedings of the 29th ACM SIGPLAN Conference on

Programming Language Design and Implementation. PLDI ’08. Tucson, AZ, USA:
ACM, 2008, pp. 101–113. isbn: 978-1-59593-860-2. doi: 10.1145/1375581.
1375595. url: http://doi.acm.org/10.1145/1375581.1375595.

[16] Léon Bottou and Yoshua Bengio. “Convergence Properties of the K-Means
Algorithms”. In: Advances in Neural Information Processing Systems. Ed. by
G. Tesauro, D. Touretzky, and T. Leen. Vol. 7. MIT Press, 1994. url:
https : / / proceedings . neurips . cc / paper / 1994 / file /
a1140a3d0df1c81e24ae954d935e8926-Paper.pdf.

[17] James Bradbury et al. JAX: composable transformations of Python+NumPy programs.
Version 0.2.5. 2018. url: http://github.com/google/jax.

[18] Lotte Maria Bruun et al. “Reverse-Mode AD of Multi-Reduce and Scan in
Futhark”. In: Proceedings of the 35th Symposium on Implementation and Applica-

tion of Functional Languages. IFL ’23. Braga, Portugal: Association for Computing
Machinery, 2024. isbn: 9798400716317. doi: 10.1145/3652561.3652575. url:
https://doi.org/10.1145/3652561.3652575.

[19] Manuel MT Chakravarty et al. “Accelerating Haskell array codes with multicore
GPUs”. In: Proc. of the sixth workshop on Declarative aspects of multicore programming.
ACM. 2011, pp. 3–14.

[20] S. Che et al. “Rodinia: A benchmark suite for heterogeneous computing”. In:
Workload Characterization, 2009. IISWC 2009. IEEE International Symposium on.
Oct. 2009, pp. 44–54. doi: 10.1109/IISWC.2009.5306797.

[21] Sharan Chetlur et al. cuDNN: Efficient Primitives for Deep Learning. 2014. doi: 10.
48550/ARXIV.1410.0759. url: https://arxiv.org/abs/1410.0759.

[22] Jason PC Chiu and Eric Nichols. “Named entity recognition with bidirectional
LSTM-CNNs”. In: Transactions of the Association for Computational Linguistics 4
(2016), pp. 357–370.

[23] Tomasz S Czajkowski et al. “From OpenCL to high-performance hardware on
FPGAs”. In: 22nd international conference on field programmable logic and applications

(FPL). IEEE. 2012, pp. 531–534.
[24] Luis Damas. “Type assignment in programming languages”. PhD thesis. The

University of Edinburgh, 1984.

https://doi.org/10.1145/173284.155343
https://doi.org/10.1145/173284.155343
https://doi.org/10.1145/173284.155343
https://doi.org/10.1145/1375581.1375595
https://doi.org/10.1145/1375581.1375595
http://doi.acm.org/10.1145/1375581.1375595
https://proceedings.neurips.cc/paper/1994/file/a1140a3d0df1c81e24ae954d935e8926-Paper.pdf
https://proceedings.neurips.cc/paper/1994/file/a1140a3d0df1c81e24ae954d935e8926-Paper.pdf
http://github.com/google/jax
https://doi.org/10.1145/3652561.3652575
https://doi.org/10.1145/3652561.3652575
https://doi.org/10.1109/IISWC.2009.5306797
https://doi.org/10.48550/ARXIV.1410.0759
https://doi.org/10.48550/ARXIV.1410.0759
https://arxiv.org/abs/1410.0759

80 BIBLIOGRAPHY

[25] Francis Dang, Hao Yu, and Lawrence Rauchwerger. “The R-LRPD Test: Specu-
lative Parallelization of Partially Parallel Loops”. In: Int. Par. and Distr. Processing

Symp. (PDPS). 2002, pp. 20–29.
[26] Emilie Danna and David L Woodruff. “How to select a small set of diverse so-

lutions to mixed integer programming problems”. In: Operations Research Letters

37.4 (2009), pp. 255–260.
[27] Emilie Danna et al. “Generating multiple solutions for mixed integer program-

ming problems”. In: International Conference on Integer Programming and Combi-

natorial Optimization. Springer. 2007, pp. 280–294.
[28] Iain Dunning, Joey Huchette, and Miles Lubin. “JuMP: A Modeling Language for

Mathematical Optimization”. In: SIAM Review 59.2 (2017), pp. 295–320. doi: 10.
1137/15M1020575. eprint: https://doi.org/10.1137/15M1020575.
url: https://doi.org/10.1137/15M1020575.

[29] Martin Elsman and Martin Dybdal. “Compiling a Subset of APL Into a Typed
Intermediate Language”. In: Proceedings of ACM SIGPLAN International Workshop

on Libraries, Languages, and Compilers for Array Programming. ARRAY’14. Edin-
burgh, United Kingdom: Association for Computing Machinery, 2014, pp. 101–
106. isbn: 9781450329378. doi: 10.1145/2627373.2627390. url: https:
//doi.org/10.1145/2627373.2627390.

[30] Martin Elsman et al. “Combinatory Adjoints and Differentiation”. In: Electronic

Proceedings in Theoretical Computer Science 360 (June 2022), pp. 1–26. issn: 2075-
2180. doi: 10.4204/eptcs.360.1. url: http://dx.doi.org/10.4204/
EPTCS.360.1.

[31] Martin Elsman et al. “Static Interpretation of Higher-order Modules in Futhark:
Functional GPU Programming in the Large”. In: Proceedings of the ACM on Pro-

gramming Languages 2.ICFP (July 2018), 97:1–97:30. issn: 2475-1421.
[32] Adin D Falkoff and Kenneth E Iverson. “The evolution of APL”. In: ACM SIGAPL

APL Quote Quad 9.1 (1978), pp. 30–44.
[33] Jeffrey S. Foster, Tachio Terauchi, and Alex Aiken. “Flow-Sensitive Type Qual-

ifiers”. In: Proceedings of the ACM SIGPLAN 2002 Conference on Programming

Language Design and Implementation. PLDI ’02. Berlin, Germany: Association
for Computing Machinery, 2002, pp. 1–12. isbn: 1581134630. doi: 10.1145/
512529.512531. url: https://doi.org/10.1145/512529.512531.

[34] Roy Frostig, Matthew James Johnson, and Chris Leary. “Compiling machine
learning programs via high-level tracing”. In: Systems for Machine Learning (2018),
pp. 23–24.

[35] Jacques Garrigue. “Relaxing the value restriction”. In: International Symposium

on Functional and Logic Programming. Springer. 2004, pp. 196–213.
[36] Assefaw H. Gebremedhin, Alex Pothen, and Andrea Walther. “Exploiting Spar-

sity in Jacobian Computation via Coloring and Automatic Differentiation: A
Case Study in a Simulated Moving Bed Process”. In: Advances in Automatic Dif-

ferentiation. Ed. by Christian H. Bischof et al. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2008, pp. 327–338. isbn: 978-3-540-68942-3.

https://doi.org/10.1137/15M1020575
https://doi.org/10.1137/15M1020575
https://doi.org/10.1137/15M1020575
https://doi.org/10.1137/15M1020575
https://doi.org/10.1145/2627373.2627390
https://doi.org/10.1145/2627373.2627390
https://doi.org/10.1145/2627373.2627390
https://doi.org/10.4204/eptcs.360.1
http://dx.doi.org/10.4204/EPTCS.360.1
http://dx.doi.org/10.4204/EPTCS.360.1
https://doi.org/10.1145/512529.512531
https://doi.org/10.1145/512529.512531
https://doi.org/10.1145/512529.512531

BIBLIOGRAPHY 81

[37] Jeremy Gibbons. “APLicative Programming with Naperian Functors”. In: Pro-

gramming Languages and Systems: 26th European Symposium on Programming, ESOP

2017, Held as Part of the European Joint Conferences on Theory and Practice of Software,

ETAPS 2017, Uppsala, Sweden, April 22–29, 2017, Proceedings. Uppsala, Sweden:
Springer-Verlag, 2017, pp. 556–583. isbn: 978-3-662-54433-4. doi: 10.1007/978-
3-662-54434-1_21. url: https://doi.org/10.1007/978-3-662-
54434-1_21.

[38] Andreas Griewank, David Juedes, and Jean Utke. “Algorithm 755: ADOL-C: A
package for the automatic differentiation of algorithms written in C/C++”. In:
ACM Transactions on Mathematical Software (TOMS) 22.2 (1996), pp. 131–167.

[39] Andreas Griewank and Andrea Walther. Evaluating derivatives: principles and

techniques of algorithmic differentiation. SIAM, 2008.
[40] Leo J. Guibas and Douglas K. Wyatt. “Compilation and delayed evaluation in

APL”. In: Proceedings of the 5th ACM SIGACT-SIGPLAN Symposium on Principles of

Programming Languages. POPL ’78. Tucson, Arizona: Association for Computing
Machinery, 1978, pp. 1–8. isbn: 9781450373487. doi:10.1145/512760.512761.
url: https://doi.org/10.1145/512760.512761.

[41] Mary W. Hall et al. “Interprocedural Parallelization Analysis in SUIF”. In: Trans.

on Prog. Lang. and Sys. (TOPLAS) 27(4) (2005), pp. 662–731.
[42] F. Maxwell Harper and Joseph A. Konstan. “The MovieLens Datasets: History

and Context”. In: ACM Trans. Interact. Intell. Syst. 5.4 (Dec. 2015). issn: 2160-6455.
doi: 10.1145/2827872. url: https://doi.org/10.1145/2827872.

[43] Charles R Harris et al. “Array programming with NumPy”. In: Nature 585.7825
(2020), pp. 357–362.

[44] Troels Henriksen. “Design and Implementation of the Futhark Programming
Language”. PhD thesis. University of Copenhagen, Faculty of Science [Depart-
ment of Computer Science], 2017.

[45] Troels Henriksen and Martin Elsman. “Towards Size-Dependent Types for Ar-
ray Programming”. In: Proceedings of the 7th ACM SIGPLAN International Work-

shop on Libraries, Languages and Compilers for Array Programming. ARRAY 2021.
Virtual, Canada: Association for Computing Machinery, 2021, pp. 1–14. isbn:
9781450384667. doi: 10.1145/3460944.3464310. url: https://doi.org/
10.1145/3460944.3464310.

[46] Troels Henriksen et al. “Compiling Generalized Histograms for GPU”. In:
Proceedings of the International Conference for High Performance Computing, Net-

working, Storage and Analysis. SC ’20. Atlanta, Georgia: IEEE Press, 2020. isbn:
9781728199986.

[47] Troels Henriksen et al. “Futhark: Purely Functional GPU-programming with
Nested Parallelism and In-place Array Updates”. In: Proceedings of the 38th ACM

SIGPLAN Conference on Programming Language Design and Implementation. PLDI
2017. Barcelona, Spain: ACM, 2017, pp. 556–571. isbn: 978-1-4503-4988-8. doi:
10.1145/3062341.3062354. url: http://doi.acm.org/10.1145/
3062341.3062354.

[48] Troels Henriksen et al. “Futhark: purely functional GPU-programming with
nested parallelism and in-place array updates”. In: SIGPLAN Not. 52.6 (June
2017), pp. 556–571. issn: 0362-1340. doi: 10.1145/3140587.3062354. url:
https://doi.org/10.1145/3140587.3062354.

https://doi.org/10.1007/978-3-662-54434-1_21
https://doi.org/10.1007/978-3-662-54434-1_21
https://doi.org/10.1007/978-3-662-54434-1_21
https://doi.org/10.1007/978-3-662-54434-1_21
https://doi.org/10.1145/512760.512761
https://doi.org/10.1145/512760.512761
https://doi.org/10.1145/2827872
https://doi.org/10.1145/2827872
https://doi.org/10.1145/3460944.3464310
https://doi.org/10.1145/3460944.3464310
https://doi.org/10.1145/3460944.3464310
https://doi.org/10.1145/3062341.3062354
http://doi.acm.org/10.1145/3062341.3062354
http://doi.acm.org/10.1145/3062341.3062354
https://doi.org/10.1145/3140587.3062354
https://doi.org/10.1145/3140587.3062354

82 BIBLIOGRAPHY

[49] Troels Henriksen et al. “Incremental Flattening for Nested Data Parallelism”. In:
Proceedings of the 24th Symposium on Principles and Practice of Parallel Programming.
PPoPP ’19. Washington, District of Columbia: ACM, 2019, pp. 53–67. isbn: 978-
1-4503-6225-2. doi: 10.1145/3293883.3295707. url: http://doi.acm.
org/10.1145/3293883.3295707.

[50] Roger Hindley. “The principal type-scheme of an object in combinatory logic”.
In: Transactions of the American Mathematical Society (AMS) (1969).

[51] Anders Kiel Hovgaard, Troels Henriksen, and Martin Elsman. “High-
performance defunctionalization in Futhark”. In: Symposium on Trends in Func-

tional Programming (TFP’18). Sept. 2018.
[52] P. Hovland and C. Bischof. “Automatic differentiation for message-passing par-

allel programs”. In: Proceedings of the First Merged International Parallel Processing

Symposium and Symposium on Parallel and Distributed Processing. 1998, pp. 98–104.
doi: 10.1109/IPPS.1998.669896.

[53] Jan Hückelheim and Laurent Hascoët. Source-to-Source Automatic Differentiation

of OpenMP Parallel Loops. 2021. doi: 10.48550/ARXIV.2111.01861. url:
https://arxiv.org/abs/2111.01861.

[54] Jan Hückelheim et al. “Automatic Differentiation for Adjoint Stencil Loops”. In:
Proceedings of the 48th International Conference on Parallel Processing. ICPP 2019.
Kyoto, Japan: Association for Computing Machinery, 2019. isbn: 9781450362955.
doi: 10.1145/3337821.3337906. url: https://doi.org/10.1145/
3337821.3337906.

[55] Roger K. W. Hui and Morten J. Kromberg. “APL since 1978”. In: Proc. ACM

Program. Lang. 4.HOPL (June 2020). doi: 10.1145/3386319. url: https:
//doi.org/10.1145/3386319.

[56] Kenneth E. Iverson. A programming language. USA: John Wiley & Sons, Inc., 1962.
isbn: 0471430145.

[57] Alexander Paul Jeffery and Martin Berger. “On Implicit Program Constructs”.
PhD thesis. University of Sussex, 2020.

[58] Mark P. Jones. “A theory of qualified types”. In: Science of Computer Programming

22.3 (1994), pp. 231–256. issn: 0167-6423. doi: https://doi.org/10.1016/
0167- 6423(94)00005- 0. url: https://www.sciencedirect.com/
science/article/pii/0167642394000050.

[59] KDD Cup 1999 Data. 1999. url: http://kdd.ics.uci.edu/databases/
kddcup99/kddcup99.html (visited on 05/15/2022).

[60] Donald E Knuth and Luis Trabb Pardo. “The early development of programming
languages”. In: A history of computing in the twentieth century (1980), pp. 197–273.

[61] Filip Křikava, Heather Miller, and Jan Vitek. “Scala implicits are everywhere: A
large-scale study of the use of scala implicits in the wild”. In: Proceedings of the

ACM on Programming Languages 3.OOPSLA (2019), pp. 1–28.
[62] Sakari Lahti et al. “Are we there yet? A study on the state of high-level synthesis”.

In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

38.5 (2018), pp. 898–911.
[63] Yi-Hsiang Lai et al. “Programming and synthesis for software-defined FPGA

acceleration: status and future prospects”. In: ACM Transactions on Reconfigurable

Technology and Systems (TRETS) 14.4 (2021), pp. 1–39.

https://doi.org/10.1145/3293883.3295707
http://doi.acm.org/10.1145/3293883.3295707
http://doi.acm.org/10.1145/3293883.3295707
https://doi.org/10.1109/IPPS.1998.669896
https://doi.org/10.48550/ARXIV.2111.01861
https://arxiv.org/abs/2111.01861
https://doi.org/10.1145/3337821.3337906
https://doi.org/10.1145/3337821.3337906
https://doi.org/10.1145/3337821.3337906
https://doi.org/10.1145/3386319
https://doi.org/10.1145/3386319
https://doi.org/10.1145/3386319
https://doi.org/https://doi.org/10.1016/0167-6423(94)00005-0
https://doi.org/https://doi.org/10.1016/0167-6423(94)00005-0
https://www.sciencedirect.com/science/article/pii/0167642394000050
https://www.sciencedirect.com/science/article/pii/0167642394000050
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

BIBLIOGRAPHY 83

[64] Wonyeol Lee et al. “On Correctness of Automatic Differentiation for Non-
Differentiable Functions”. In: CoRR abs/2006.06903 (2020). arXiv: 2006.06903.
url: https://arxiv.org/abs/2006.06903.

[65] Jeffrey R Lewis et al. “Implicit parameters: Dynamic scoping with static types”.
In: Proceedings of the 27th ACM SIGPLAN-SIGACT symposium on Principles of

programming languages. 2000, pp. 108–118.
[66] B. Lu and J. Mellor-Crummey. “Compiler optimization of implicit reductions

for distributed memory multiprocessors”. In: Proceedings of the First Merged In-

ternational Parallel Processing Symposium and Symposium on Parallel and Distributed

Processing. 1998, pp. 42–51. doi: 10.1109/IPPS.1998.669887.
[67] Andrew Maas et al. “Learning word vectors for sentiment analysis”. In: Proceed-

ings of the 49th annual meeting of the association for computational linguistics: Human

language technologies. 2011, pp. 142–150.
[68] Oleksandr Manzyuk et al. “Perturbation confusion in forward automatic dif-

ferentiation of higher-order functions”. In: Journal of Functional Programming 29
(2019), e12. doi: 10.1017/S095679681900008X.

[69] Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. “Building
a Large Annotated Corpus of English: The Penn Treebank”. In: Computational

Linguistics 19.2 (1993), pp. 313–330. url: https://aclanthology.org/J93-
2004.

[70] Charles C. Margossian. “A review of automatic differentiation and its efficient
implementation”. In: WIREs Data Mining and Knowledge Discovery 9.4 (2019),
e1305. doi: https://doi.org/10.1002/widm.1305. eprint: https:
//wires.onlinelibrary.wiley.com/doi/pdf/10.1002/widm.1305.
url: https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/
widm.1305.

[71] Robin Milner. “A theory of type polymorphism in programming”. In: Journal of

Computer and System Sciences (1978).
[72] Robin Milner. The definition of standard ML: revised. MIT press, 1997.
[73] Torben Ægidius Mogensen. Introduction to Compiler Design. 1st. Springer Pub-

lishing Company, Incorporated, 2011. isbn: 0857298283.
[74] Greg Morrisett. “Compiling with Types”. PhD thesis. School of Computer Sci-

ence, Carnegie Mellon University, Pittsburgh, PA 15213, Dec. 1995.
[75] William S. Moses and Valentin Churavy. “Instead of Rewriting Foreign Code

for Machine Learning, Automatically Synthesize Fast Gradients”. In: Advances

in Neural Information Processing Systems 33. 2020.
[76] William S. Moses et al. “Reverse-Mode Automatic Differentiation and Optimiza-

tion of GPU Kernels via Enzyme”. In: Proceedings of the International Conference for

High Performance Computing, Networking, Storage and Analysis. SC ’21. St. Louis,
Missouri: Association for Computing Machinery, 2021. isbn: 9781450384421.
doi: 10.1145/3458817.3476165. url: https://doi.org/10.1145/
3458817.3476165.

[77] Uwe Naumann. The Art of Differentiating Computer Programs. Society for Industrial
and Applied Mathematics, 2011. doi: 10.1137/1.9781611972078. eprint:
https://epubs.siam.org/doi/pdf/10.1137/1.9781611972078. url:
https://epubs.siam.org/doi/abs/10.1137/1.9781611972078.

https://arxiv.org/abs/2006.06903
https://arxiv.org/abs/2006.06903
https://doi.org/10.1109/IPPS.1998.669887
https://doi.org/10.1017/S095679681900008X
https://aclanthology.org/J93-2004
https://aclanthology.org/J93-2004
https://doi.org/https://doi.org/10.1002/widm.1305
https://wires.onlinelibrary.wiley.com/doi/pdf/10.1002/widm.1305
https://wires.onlinelibrary.wiley.com/doi/pdf/10.1002/widm.1305
https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/widm.1305
https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/widm.1305
https://doi.org/10.1145/3458817.3476165
https://doi.org/10.1145/3458817.3476165
https://doi.org/10.1145/3458817.3476165
https://doi.org/10.1137/1.9781611972078
https://epubs.siam.org/doi/pdf/10.1137/1.9781611972078
https://epubs.siam.org/doi/abs/10.1137/1.9781611972078

84 BIBLIOGRAPHY

[78] Corey J. Nolet et al. GPU Semiring Primitives for Sparse Neighborhood Methods.
2021. doi: 10.48550/ARXIV.2104.06357. url: https://arxiv.org/
abs/2104.06357.

[79] Cosmin E. Oancea, Troels Henriksen, and Robert Schenck. Reverse Mode Au-

tomatic Differentiation. Lecture Slides for the Parallel Functional Programming
MSc Course. Dec. 2020. url: https://github.com/diku-dk/pfp-e2020-
pub/blob/master/slides/L8-reverse-ad.pdf.

[80] Cosmin E. Oancea and Lawrence Rauchwerger. “Logical Inference Techniques
for Loop Parallelization”. In: Proceedings of the 33rd ACM SIGPLAN Conference on

Programming Language Design and Implementation. PLDI ’12. Beĳing, China: ACM,
2012, pp. 509–520. isbn: 978-1-4503-1205-9. doi: 10.1145/2254064.2254124.
url: http://doi.acm.org/10.1145/2254064.2254124.

[81] Martin Odersky, Martin Sulzmann, and Martin Wehr. “Type inference with
constrained types”. In: Theory and Practice of Object Systems 5.1 (1999), pp. 35–55.
doi: https://doi.org/10.1002/(SICI)1096-9942(199901/03)5:
1<35::AID-TAPO4>3.0.CO;2-4.

[82] Martin Odersky et al. “Simplicitly: Foundations and applications of implicit
function types”. In: Proceedings of the ACM on Programming Languages 2.POPL
(2017), pp. 1–29.

[83] Bruno CdS Oliveira, Adriaan Moors, and Martin Odersky. “Type classes as
objects and implicits”. In: ACM Sigplan Notices 45.10 (2010), pp. 341–360.

[84] Adam Paszke et al. “Getting to the Point: Index Sets and Parallelism-Preserving
Autodiff for Pointful Array Programming”. In: Proc. ACM Program. Lang. 5.ICFP
(Aug. 2021). doi: 10.1145/3473593. url: https://doi.org/10.1145/
3473593.

[85] Adam Paszke et al. “Parallelism-Preserving Automatic Differentiation for
Second-Order Array Languages”. In: Proceedings of the 9th ACM SIGPLAN In-

ternational Workshop on Functional High-Performance and Numerical Computing.
FHPNC 2021. Virtual, Republic of Korea: Association for Computing Machin-
ery, 2021, pp. 13–23. isbn: 9781450386142. doi: 10.1145/3471873.3472975.
url: https://doi.org/10.1145/3471873.3472975.

[86] Adam Paszke et al. “PyTorch: An imperative style, high-performance deep
learning library”. In: Advances in neural information processing systems 32 (2019),
pp. 8026–8037.

[87] Barak A. Pearlmutter and Jeffrey Mark Siskind. “Reverse-Mode AD in a Func-
tional Framework: Lambda the Ultimate Backpropagator”. In: ACM Trans. Pro-

gram. Lang. Syst. 30.2 (Mar. 2008). issn: 0164-0925. doi: 10.1145/1330017.
1330018. url: https://doi.org/10.1145/1330017.1330018.

[88] Jeffrey Pennington, Richard Socher, and Christopher D Manning. “Glove: Global
vectors for word representation”. In: Proceedings of the 2014 conference on empirical

methods in natural language processing (EMNLP). 2014, pp. 1532–1543.
[89] John Peterson and Mark Jones. “Implementing Type Classes”. In: Proceedings of

the ACM SIGPLAN 1993 Conference on Programming Language Design and Imple-

mentation. PLDI ’93. Albuquerque, New Mexico, USA: Association for Comput-
ing Machinery, 1993, pp. 227–236. isbn: 0897915984. doi: 10.1145/155090.
155112. url: https://doi.org/10.1145/155090.155112.

https://doi.org/10.48550/ARXIV.2104.06357
https://arxiv.org/abs/2104.06357
https://arxiv.org/abs/2104.06357
https://github.com/diku-dk/pfp-e2020-pub/blob/master/slides/L8-reverse-ad.pdf
https://github.com/diku-dk/pfp-e2020-pub/blob/master/slides/L8-reverse-ad.pdf
https://doi.org/10.1145/2254064.2254124
http://doi.acm.org/10.1145/2254064.2254124
https://doi.org/https://doi.org/10.1002/(SICI)1096-9942(199901/03)5:1<35::AID-TAPO4>3.0.CO;2-4
https://doi.org/https://doi.org/10.1002/(SICI)1096-9942(199901/03)5:1<35::AID-TAPO4>3.0.CO;2-4
https://doi.org/10.1145/3473593
https://doi.org/10.1145/3473593
https://doi.org/10.1145/3473593
https://doi.org/10.1145/3471873.3472975
https://doi.org/10.1145/3471873.3472975
https://doi.org/10.1145/1330017.1330018
https://doi.org/10.1145/1330017.1330018
https://doi.org/10.1145/1330017.1330018
https://doi.org/10.1145/155090.155112
https://doi.org/10.1145/155090.155112
https://doi.org/10.1145/155090.155112

BIBLIOGRAPHY 85

[90] Simon Peyton Jones, Mark Jones, and Erik Meĳer. “Type classes: an exploration
of the design space”. In: Haskell workshop. Jan. 1997. url: https://www.
microsoft.com/en- us/research/publication/type- classes-
an-exploration-of-the-design-space/.

[91] Ari Rasch, Richard Schulze, and Sergei Gorlatch. “Generating Portable High-
Performance Code via Multi-Dimensional Homomorphisms”. In: 2019 28th In-

ternational Conference on Parallel Architectures and Compilation Techniques (PACT).
2019, pp. 354–369. doi: 10.1109/PACT.2019.00035.

[92] Dennis M. Ritchie. “The development of the C programming language”. In:
History of Programming Languages—II. New York, NY, USA: Association for Com-
puting Machinery, 1996, pp. 671–698. isbn: 0201895021. url: https://doi.
org/10.1145/234286.1057834.

[93] Hongbo Rong. “Programmatic control of a compiler for generating high-
performance spatial hardware”. In: arXiv preprint arXiv:1711.07606 (2017).

[94] Ola Rønning, Daniel Hardt, and Anders Søgaard. “Sluice resolution without
hand-crafted features over brittle syntax trees”. In: Proceedings of the 2018 Confer-

ence of the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies, Volume 2 (Short Papers). 2018, pp. 236–241.
[95] Amr Sabry and Matthias Felleisen. “Reasoning About Programs in

Continuation-passing Style.” In: SIGPLAN Lisp Pointers V.1 (Jan. 1992), pp. 288–
298. issn: 1045-3563.

[96] Haşim Sak, Andrew Senior, and Françoise Beaufays. Long Short-Term Memory

Based Recurrent Neural Network Architectures for Large Vocabulary Speech Recogni-

tion. 2014. doi: 10.48550/ARXIV.1402.1128. url: https://arxiv.org/
abs/1402.1128.

[97] Robert Schenck et al. “AD for an Array Language with Nested Parallelism”.
In: Proceedings of the International Conference on High Performance Computing,

Networking, Storage and Analysis. SC ’22. Dallas, Texas: IEEE Press, 2022. isbn:
9784665454445.

[98] Robert Schenck et al. “AUTOMAP: Inferring Rank-Polymorphic Function Appli-
cations with Integer Linear Programming”. In: Proceedings of the ACM on Pro-

gramming Languages 8.OOPSLA2 (2024). doi: 10.1145/3689774. url: https:
//doi.org/10.1145/3689774.

[99] Robert Schenck et al. futhark-ad-sc22. Version v1.0.4. July 2022. doi: 10.5281/
zenodo.6853848. url: https://doi.org/10.5281/zenodo.6853848.

[100] Robert Schenck et al. futhark-oopsla24. Version 1.0.4. July 2024. doi: 10.5281/
zenodo . 12775308. url: https : / / doi . org / 10 . 5281 / zenodo .
12775308.

[101] Amir Shaikhha et al. “Efficient Differentiable Programming in a Functional
Array-Processing Language”. In: Proc. ACM Program. Lang. 3.ICFP (July 2019).
doi: 10.1145/3341701. url: https://doi.org/10.1145/3341701.

[102] Artjoms Šinkarovs, Thomas Koopman, and Sven-Bodo Scholz. “Rank-
Polymorphism for Shape-Guided Blocking”. In: Proceedings of the 11th ACM

SIGPLAN International Workshop on Functional High-Performance and Numerical

Computing. FHPNC 2023. Seattle, WA, USA: Association for Computing Machin-
ery, 2023, pp. 1–14. isbn: 9798400702969. doi: 10.1145/3609024.3609410.

https://www.microsoft.com/en-us/research/publication/type-classes-an-exploration-of-the-design-space/
https://www.microsoft.com/en-us/research/publication/type-classes-an-exploration-of-the-design-space/
https://www.microsoft.com/en-us/research/publication/type-classes-an-exploration-of-the-design-space/
https://doi.org/10.1109/PACT.2019.00035
https://doi.org/10.1145/234286.1057834
https://doi.org/10.1145/234286.1057834
https://doi.org/10.48550/ARXIV.1402.1128
https://arxiv.org/abs/1402.1128
https://arxiv.org/abs/1402.1128
https://doi.org/10.1145/3689774
https://doi.org/10.1145/3689774
https://doi.org/10.1145/3689774
https://doi.org/10.5281/zenodo.6853848
https://doi.org/10.5281/zenodo.6853848
https://doi.org/10.5281/zenodo.6853848
https://doi.org/10.5281/zenodo.12775308
https://doi.org/10.5281/zenodo.12775308
https://doi.org/10.5281/zenodo.12775308
https://doi.org/10.5281/zenodo.12775308
https://doi.org/10.1145/3341701
https://doi.org/10.1145/3341701
https://doi.org/10.1145/3609024.3609410

86 BIBLIOGRAPHY

[103] Artjoms Šinkarovs and Sven-Bodo Scholz. “Parallel Scan as a Multidimen-
sional Array Problem”. In: Proceedings of the 8th ACM SIGPLAN International

Workshop on Libraries, Languages and Compilers for Array Programming. AR-
RAY 2022. San Diego, CA, USA: Association for Computing Machinery, 2022,
pp. 1–11. isbn: 9781450392693. doi: 10 . 1145 / 3520306 . 3534500. url:
SinkarovsScholzARRAY22.pdf.

[104] Jeffrey Mark Siskind and Barak A. Pearlmutter. “Divide-and-Conquer Check-
pointing for Arbitrary Programs with No User Annotation”. In: Optimization

Methods and Software 33.4-6 (2018), pp. 1288–1330. doi: 10.1080/10556788.
2018.1459621. eprint: https://doi.org/10.1080/10556788.2018.
1459621. url: https://doi.org/10.1080/10556788.2018.1459621.

[105] Justin Slepak. “A Typed Programming Language”. PhD thesis. Northeastern
University Boston, 2020.

[106] Justin Slepak, Panagiotis Manolios, and Olin Shivers. “Rank polymorphism
viewed as a constraint problem”. In: Proceedings of the 5th ACM SIGPLAN In-

ternational Workshop on Libraries, Languages, and Compilers for Array Programming.
ARRAY 2018. Philadelphia, PA, USA: Association for Computing Machinery,
2018, pp. 34–41. isbn: 9781450358521. doi: 10.1145/3219753.3219758. url:
https://doi.org/10.1145/3219753.3219758.

[107] Justin Slepak, Olin Shivers, and Panagiotis Manolios. “An array-oriented lan-
guage with static rank polymorphism”. In: Programming Languages and Systems:

23rd European Symposium on Programming, ESOP 2014, Held as Part of the European

Joint Conferences on Theory and Practice of Software, ETAPS 2014, Grenoble, France,

April 5-13, 2014, Proceedings 23. Springer. 2014, pp. 27–46. doi: 10.1007/978-
3-642-54833-8_3.

[108] Filip Srajer, Zuzana Kukelova, and Andrew Fitzgibbon. “A benchmark of se-
lected algorithmic differentiation tools on some problems in computer vision
and machine learning”. In: Optimization Methods & Software 33.4–6 (2018). Ed. by
Bruce Christianson, Shaun A. Forth, and Andreas Griewank, pp. 889–906. doi:
10.1080/10556788.2018.1435651. eprint: https://doi.org/10.
1080/10556788.2018.1435651. url: https://doi.org/10.1080/
10556788.2018.1435651.

[109] John A Stratton et al. “Parboil: A revised benchmark suite for scientific and
commercial throughput computing”. In: Center for Reliable and High-Performance

Computing 127 (2012).
[110] Martin Franz Sulzmann and Paul Hudak. “A General Framework for Hind-

ley/Milner Type Systems with Constraints”. AAI9973781. PhD thesis. USA, 2000.
isbn: 0599791896.

[111] M. Tadjouddine, F. Eyssette, and C. Faure. “Sparse Jacobian Computation in
Automatic Differentiation by Static Program Analysis”. In: Static Analysis. Ed. by
Giorgio Levi. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998, pp. 311–326.
isbn: 978-3-540-49727-1.

[112] Satish Thatte. “A type system for implicit scaling”. In: Science of Computer Pro-

gramming 17.1 (1991), pp. 217–245. issn: 0167-6423. doi: https://doi.org/
10.1016/0167-6423(91)90040-5. url: https://www.sciencedirect.
com/science/article/pii/0167642391900405.

https://doi.org/10.1145/3520306.3534500
SinkarovsScholzARRAY22.pdf
https://doi.org/10.1080/10556788.2018.1459621
https://doi.org/10.1080/10556788.2018.1459621
https://doi.org/10.1080/10556788.2018.1459621
https://doi.org/10.1080/10556788.2018.1459621
https://doi.org/10.1080/10556788.2018.1459621
https://doi.org/10.1145/3219753.3219758
https://doi.org/10.1145/3219753.3219758
https://doi.org/10.1007/978-3-642-54833-8_3
https://doi.org/10.1007/978-3-642-54833-8_3
https://doi.org/10.1080/10556788.2018.1435651
https://doi.org/10.1080/10556788.2018.1435651
https://doi.org/10.1080/10556788.2018.1435651
https://doi.org/10.1080/10556788.2018.1435651
https://doi.org/10.1080/10556788.2018.1435651
https://doi.org/https://doi.org/10.1016/0167-6423(91)90040-5
https://doi.org/https://doi.org/10.1016/0167-6423(91)90040-5
https://www.sciencedirect.com/science/article/pii/0167642391900405
https://www.sciencedirect.com/science/article/pii/0167642391900405

BIBLIOGRAPHY 87

[113] Jung-Fa Tsai, Ming-Hua Lin, and Yi-Chung Hu. “Finding multiple solutions
to general integer linear programs”. In: European Journal of Operational Research

184.2 (2008), pp. 802–809.
[114] Nicolas Vasilache et al. “The Next 700 Accelerated Layers: From Mathematical

Expressions of Network Computation Graphs to Accelerated GPU Kernels, Au-
tomatically”. In: ACM Trans. Archit. Code Optim. 16.4 (Oct. 2019). issn: 1544-3566.
doi: 10.1145/3355606. url: https://doi.org/10.1145/3355606.

[115] Sven Verdoolaege et al. “Polyhedral Parallel Code Generation for CUDA”. In:
ACM Trans. Archit. Code Optim. 9.4 (Jan. 2013), 54:1–54:23. issn: 1544-3566. doi:
10.1145/2400682.2400713. url: http://doi.acm.org/10.1145/
2400682.2400713.

[116] Dimitrios Vytiniotis, Simon Peyton Jones, and Tom Schrĳvers. “Let should not
be generalized”. In: Proceedings of the 5th ACM SIGPLAN Workshop on Types

in Language Design and Implementation. TLDI ’10. Madrid, Spain: Association
for Computing Machinery, 2010, pp. 39–50. isbn: 9781605588919. doi: 10 .
1145/1708016.1708023. url: https://doi.org/10.1145/1708016.
1708023.

[117] Dimitrios Vytiniotis et al. “OutsideIn (X) Modular type inference with local
assumptions”. In: Journal of functional programming 21.4-5 (2011), pp. 333–412.

[118] Fei Wang et al. “Demystifying Differentiable Programming: Shift/Reset the
Penultimate Backpropagator”. In: Proc. ACM Program. Lang. 3.ICFP (July 2019).
doi: 10.1145/3341700. url: https://doi.org/10.1145/3341700.

[119] A.K. Wright and M. Felleisen. “A Syntactic Approach to Type Soundness”. In:
Inf. Comput. 115.1 (Nov. 1994), pp. 38–94. issn: 0890-5401. doi: 10.1006/inco.
1994.1093. url: https://doi.org/10.1006/inco.1994.1093.

https://doi.org/10.1145/3355606
https://doi.org/10.1145/3355606
https://doi.org/10.1145/2400682.2400713
http://doi.acm.org/10.1145/2400682.2400713
http://doi.acm.org/10.1145/2400682.2400713
https://doi.org/10.1145/1708016.1708023
https://doi.org/10.1145/1708016.1708023
https://doi.org/10.1145/1708016.1708023
https://doi.org/10.1145/1708016.1708023
https://doi.org/10.1145/3341700
https://doi.org/10.1145/3341700
https://doi.org/10.1006/inco.1994.1093
https://doi.org/10.1006/inco.1994.1093
https://doi.org/10.1006/inco.1994.1093

Appendix A

Proofs for Automap

This appendix includes proofs for Chapter 4. Each proposition is numbered and stated
as it is in that chapter and in the same corresponding sections. (For example, Propo-
sition 1 from Section 4.4 will also be denoted Proposition 1 in this appendix and will
appear under Appendix A.4.) The appendix will also introduce lemmas that do not
have corresponding lemmas in chapter 4.

A.4 Target Language
The following lemma shows that the type scheme generalization is closed under type
substitutions; this is needed to show that the target language typing derivation is closed
under substitution.

Lemma 1 (≥ Closed Under Type Substitution). If 𝜎 ≥ 𝜏 then 𝑠(𝜎) ≥ 𝑠(𝜏) for any non-

capturing substitution 𝑠.

Proof. Suppose 𝜎 = ∀®𝛼.𝜏′. Since 𝜎 ≥ 𝜏, there exists 𝑠′t such that ⌈1⌉ 𝑠′t(𝜏′) = 𝜏 with
dom(𝑠′t) = { ®𝛼}. By ⌈1⌉, we have 𝑠(𝑠′t(𝜏′)) = 𝑠(𝜏).

We need to find 𝑠′′t with dom(𝑠′′t) = { ®𝛼} such that 𝑠′′t (𝑠(𝜏′)) = 𝑠(𝜏) = 𝑠(𝑠′t(𝜏′)). Define

𝑠′′t (𝛽) =
{
𝛽 if 𝛽 ∉ { ®𝛼},
𝑠(𝑠′t(𝛽)) if 𝛽 ∈ { ®𝛼}.

Then, if 𝛽 ∉ { ®𝛼},

𝑠′′t (𝑠(𝛽)) = 𝑠(𝛽) = 𝑠(𝑠′t(𝛽)),

and if 𝛽 ∈ { ®𝛼},

𝑠′′t (𝑠t(𝛽)) = 𝑠′′t (𝛽) = 𝑠(𝑠′t(𝛽)),

as required. □

Proposition 1 (Typing Closed Under Type Substitution). If Γ ⊢ 𝑝 : 𝜎 then 𝑠t(Γ) ⊢ 𝑝 : 𝑠t(𝜎),
for any type substitution 𝑠t.

Proof. By induction over the typing derivation. The SV- rules for values are skipped
because they’re either trivial or analogous to the corresponding expression rules.

88

A.4. TARGET LANGUAGE 89

Case S-Var (Γ, 𝑥 : 𝜎 ⊢ 𝑥 : 𝜎) :
Immediate.

Case S-Inst (Γ ⊢ 𝑒 : 𝜏) :
We have ⌈1⌉ Γ ⊢ 𝑒 : 𝜎 and ⌈2⌉ 𝜎 ≥ 𝜏. By the IH, ⌈3⌉ 𝑠t(Γ) ⊢ 𝑒 : 𝑠t(𝜎), Since ≥ is
closed under substitution, ⌈1⌉ yields ⌈4⌉ 𝑠t(𝜎) ≥ 𝑠t(𝜏). Applying S-Inst to ⌈3⌉ and
⌈4⌉ gives 𝑠t(Γ) ⊢ 𝑒 : 𝑠t(𝜏).

Case S-Array (Γ ⊢ [𝑒1 , . . . , 𝑒𝑛] : [] 𝜏) :
We have ⌈1⌉ ∀𝑖 ∈ {1, . . . , 𝑛} . Γ ⊢ 𝑒𝑖 : 𝜏. Applying the IH to ⌈1⌉, ⌈2⌉
∀𝑖 ∈ {1, . . . , 𝑛} . 𝑠t(Γ) ⊢ 𝑒𝑖 : 𝑠t(𝜏). Applying S-Array to ⌈2⌉, 𝑠t(Γ) ⊢
[𝑣1 , . . . , 𝑣𝑛] : 𝑠t([] 𝜏).

Case S-Val (Γ ⊢ 𝑣 : 𝜏) :
We have ⌈1⌉ ⊢ 𝑣 : 𝜏. Applying the IH to ⌈1⌉, ⌈2⌉ ⊢ 𝑣 : 𝑠t(𝜏). Applying S-Val to
⌈2⌉, 𝑠t(Γ) ⊢ 𝑣 : 𝑠t(𝜏).

Case S-Fun (Γ ⊢ 𝜆𝑥. 𝑒 : 𝜏→ 𝜏′) :
We have ⌈1⌉ Γ, 𝑥 : 𝜏 ⊢ 𝑒 : 𝜏′. Applying the IH to ⌈1⌉, ⌈2⌉ 𝑠t(Γ), 𝑥 : 𝑠t(𝜏) ⊢ 𝑒 : 𝑠t(𝜏′).
Applying S-Fun to ⌈2⌉, 𝑠t(Γ) ⊢ 𝜆𝑥. 𝑒 : 𝑠t(𝜏→ 𝜏′).

Case S-App (Γ ⊢ 𝑒1 𝑒2 : 𝜏2) :
We have ⌈1⌉ Γ ⊢ 𝑒1 : 𝜏1 → 𝜏2 and ⌈2⌉ Γ ⊢ 𝑒2 : 𝜏1. Applying the IH to ⌈1⌉ and ⌈2⌉,
we obtain ⌈3⌉ 𝑠t(Γ) ⊢ 𝑒1 : 𝑠t(𝜏1 → 𝜏2) and ⌈4⌉ 𝑠t(Γ) ⊢ 𝑒2 : 𝑠t(𝜏1). Applying S-App
to ⌈3⌉ and ⌈4⌉, 𝑠t(Γ) ⊢ 𝑒1 𝑒2 : 𝑠t(𝜏2)

Case S-Map (Γ ⊢ map 𝑒1 𝑒2 : []𝜏2) :
We have ⌈1⌉ Γ ⊢ 𝑒1 : 𝜏1 → 𝜏2 and ⌈2⌉ Γ ⊢ 𝑒2 : []𝜏1. Applying the IH to ⌈1⌉ and
⌈2⌉, we obtain ⌈3⌉ 𝑠t(Γ) ⊢ 𝑒1 : 𝑠t(𝜏1 → 𝜏2) and ⌈4⌉ 𝑠t(Γ) ⊢ 𝑒2 : 𝑠t([]𝜏1). Applying
S-Map to ⌈3⌉ and ⌈4⌉, 𝑠t(Γ) ⊢ map 𝑒1 𝑒2 : 𝑠t([]𝜏2)

Case S-Rep (Γ ⊢ rep 𝑒 : [] 𝜏) :
We have ⌈1⌉ Γ ⊢ 𝑒 : 𝜏. Applying the IH to ⌈1⌉, ⌈2⌉ 𝑠t(Γ) ⊢ 𝑒 : 𝑠t(𝜏). Applying
S-Rep to ⌈2⌉, 𝑠t(Γ) ⊢ rep 𝑒 : 𝑠t([] 𝜏).

Case S-Def (Γ ⊢ def 𝑓 𝑥 = 𝑒 ; 𝑝 : 𝜎′) :
We have ⌈1⌉ Γ, 𝑥 : 𝜏 ⊢ 𝑒 : 𝜏′, ⌈2⌉ { ®𝛼} ∩ ftv(Γ, 𝜎′) = ∅, and ⌈3⌉ Γ, 𝑓 : ∀®𝛼.𝜏 →
𝜏′ ⊢ 𝑝 : 𝜎′. Choose { ®𝛼′} such that ⌈4⌉ { ®𝛼′} ∩ ftv(𝑠t(Γ), 𝑠t(𝜎), 𝑠t) = ∅ (where
ftv(𝑠t) = {ftv(𝑠t(𝛽)) | 𝛽 ∈ dom(𝑠t)}) and there exists a bĳective substitution 𝑠rename
between { ®𝛼} and { ®𝛼′}. Since type schemes are equal up to bound variable re-
naming, we have ⌈5⌉ Γ, 𝑓 : ∀ ®𝛼′.𝑠rename(𝜏 → 𝜏′) ⊢ 𝑝 : 𝜎′. Applying the IH to
⌈1⌉ with the substitution 𝑠t ◦ 𝑠rename yields ⌈6⌉ 𝑠t(𝑠rename(Γ)), 𝑥 : 𝑠t(𝑠rename(𝜏)) ⊢
𝑒 : 𝑠t(𝑠rename(𝜏′)). By ⌈2⌉ this is equivalent to ⌈7⌉ 𝑠t(Γ), 𝑥 : 𝑠t(𝑠rename(𝜏)) ⊢
𝑒 : 𝑠t(𝑠rename(𝜏′)). Applying the IH to ⌈5⌉ with the substitution 𝑠t yields
𝑠t(Γ), 𝑓 : ∀ ®𝛼′.𝑠t|𝑉t\{ ®𝛼′}(𝑠rename(𝜏) → 𝑠rename(𝜏′))) ⊢ 𝑝 : 𝑠t(𝜎′) which is equivalent
to ⌈8⌉ 𝑠t(Γ), 𝑓 : ∀ ®𝛼′.𝑠t(𝑠rename(𝜏)) → 𝑠t(𝑠rename(𝜏′))) ⊢ 𝑝 : 𝑠t(𝜎′) by ⌈4⌉. Applying
S-Def to ⌈7⌉, ⌈4⌉, and ⌈8⌉ yields 𝑠t(Γ) ⊢ def 𝑓 𝑥 = 𝑒 ; 𝑝 : 𝑠t(𝜎′).

□

Proposition 2 (Unique Decomposition). If ⊢ 𝑝 : 𝜎 then either 𝑝 is a value or there exists a

type scheme 𝜎′, a unique expression 𝑒, and a unique context 𝐾 such that 𝑝 = 𝐾⟨𝑒⟩ and ⊢ 𝑒 : 𝜎′

and 𝑒 is a redex.

90 APPENDIX A. PROOFS FOR AUTOMAP

Proof. By induction over the typing derivation.

Case S-Var :
Impossible because an empty context is assumed.

Case S-Inst (⊢ 𝑒 : 𝜏) :
We have ⌈1⌉ ⊢ 𝑒 : 𝜎 and ⌈2⌉ 𝜎 ≥ 𝜏. By the IH, there exists 𝜎′ and a unique redex
𝑒′ and context 𝐾 such that 𝑒 = 𝐾⟨𝑒′⟩ and ⊢ 𝑒′ : 𝜎′.

Case S-Array (⊢ [𝑒1 , . . . , 𝑒𝑛] : [] 𝜏) :
We have ⌈1⌉ ∀𝑖 ∈ {1, . . . , 𝑛} . ⊢ 𝑒𝑖 : 𝜏. Applying the IH to ⌈1⌉, for all 𝑖 ∈ {1, . . . , 𝑛}
either 𝑒𝑖 is a value or there exists 𝜎𝑖 along with a unique redex 𝑒′

𝑖
and context 𝐾𝑖

such that ⌈2⌉ 𝑒𝑖 = 𝐾𝑖⟨𝑒′𝑖⟩ and ⊢ 𝑒′
𝑖

: 𝜎𝑖 . If every 𝑒𝑖 is a value, we’re done. Otherwise,
choose the 𝑖 where 𝑒𝑖 isn’t a value and set 𝐾 = [𝑒1 , . . . , 𝑒𝑖−1 , 𝐶𝑖 , 𝑒𝑖+1 , . . . , 𝑒𝑛]. By
⌈2⌉, [𝑒1 , . . . , 𝑒𝑛] = 𝐾⟨𝑒′

𝑖
⟩ and 𝐾 is unique by the uniqueness of 𝐾𝑖 and the definition

of contexts.

Case S-Val (⊢ 𝑣 : 𝜏) :
𝑣 is a value.

Case S-Fun (⊢ 𝜆𝑥. 𝑒 : 𝜏→ 𝜏′) :
𝜆𝑥. 𝑒 is a value.

Case S-App (⊢ 𝑒1 𝑒2 : 𝜏2) :
We have ⌈1⌉ ⊢ 𝑒1 : 𝜏1 → 𝜏2 and ⌈2⌉ ⊢ 𝑒2 : 𝜏1.

Subcase 𝑒1 isn’t a value :
Applying the IH on ⌈1⌉, there exists 𝜎′1 and a unique redex 𝑒′1 and context 𝐾1
such that ⌈3⌉ 𝑒1 = 𝐾1⟨𝑒′1⟩ and ⌈4⌉ ⊢ 𝑒′1 : 𝜎′1. Choosing 𝐾 = 𝐾1 𝑒2, we have
𝑒1 𝑒2 = 𝐾⟨𝑒′1⟩ as required.

Subcase 𝑒1 is a value and 𝑒2 isn’t a value :
Analogous to the previous case, except 𝐾 = 𝑒1 𝐾2 where 𝐾2 is the context
obtained by invoking the IH on ⌈2⌉.

Subcase 𝑒1 is a value and 𝑒2 is a value :
Since 𝑒1 𝑒2 is a redex, we simply choose 𝐾 = ⟨·⟩.

Case S-Map (⊢ map 𝑒1 𝑒2 : []𝜏2) :
The proof for this case proceeds nearly identically to the one for S-App (except a
map-context is chosen except for an application context).

Case S-Rep (⊢ rep 𝑒 : [] 𝜏) :
We have ⌈1⌉ ⊢ 𝑒 : 𝜏. If 𝑒 is a value, we’re done. Otherwise, applying the IH to
⌈1⌉, there exists 𝜎′ and a unique redex 𝑒′ and context 𝐾′ such that ⌈2⌉ 𝑒 = 𝐾′⟨𝑒′⟩
and ⊢ 𝑒′ : 𝜎′. By ⌈2⌉. Choosing 𝐾 = rep 𝐶′ we have 𝑒 = 𝐾⟨𝑒′⟩.

Case S-Def (⊢ def 𝑓 𝑥 = 𝑒 ; 𝑝 : 𝜎′) :
This case is a redex, so we simply choose 𝐾 = ⟨·⟩.

□

Proposition 3 (Typing Closed Under Value Substitution). If Γ, 𝑥 : 𝜎′ ⊢ 𝑝 : 𝜎 and ⊢ 𝑣 : 𝜎′
then Γ ⊢ 𝑝[𝑣/𝑥] : 𝜎.

Proof. By induction over Γ, 𝑥 : 𝜎′ ⊢ 𝑝 : 𝜎. The SV- rules for values are skipped because
they’re either trivial or analogous to the corresponding expression rules.

A.4. TARGET LANGUAGE 91

Case S-Var (Γ, 𝑦 : 𝜎 ⊢ 𝑦 : 𝜎) :
If 𝑥 ≠ 𝑦 then Γ, 𝑦 : 𝜎 ⊢ 𝑦[𝑣/𝑥] : 𝜎 is equivalent to Γ, 𝑦 : 𝜎 ⊢ 𝑦 : 𝜎, which clearly
holds by S-Var. If 𝑥 = 𝑦, then Γ, 𝑦 : 𝜎 ⊢ 𝑦[𝑣/𝑥] : 𝜎 is equivalent to Γ, 𝑥 : 𝜎 ⊢ 𝑣 : 𝜎,
which holds by assumption.

Case S-Inst (Γ, 𝑥 : 𝜎′ ⊢ 𝑒 : 𝜏) :
We have ⌈1⌉ Γ, 𝑥 : 𝜎′ ⊢ 𝑒 : 𝜎 and ⌈2⌉ 𝜎 ≥ 𝜏. By the IH, ⌈3⌉ Γ, 𝑥 : 𝜎′ ⊢ 𝑒[𝑣/𝑥] : 𝜎
and applying S-Inst to ⌈2⌉ and ⌈3⌉ yields Γ, 𝑥 : 𝜎′ ⊢ 𝑒[𝑣/𝑥] : 𝜏.

Case S-Array (Γ, 𝑥 : 𝜎′ ⊢ [𝑒1 , . . . , 𝑒𝑛] : [] 𝜏) :
We have ⌈1⌉ ∀𝑖 ∈ {1, . . . , 𝑛} . Γ, 𝑥 : 𝜎′ ⊢ 𝑒𝑖 : 𝜏. Applying the IH to ⌈1⌉, ⌈2⌉
∀𝑖 ∈ {1, . . . , 𝑛} . Γ, 𝑥 : 𝜎′ ⊢ 𝑒𝑖[𝑣/𝑥] : 𝜏. Applying S-Array to ⌈2⌉, Γ, 𝑥 : 𝜎′ ⊢
[𝑒1[𝑣/𝑥], . . . , 𝑒𝑛[𝑣/𝑥]]) : [] 𝜏.

Case S-Val (Γ, 𝑥 : 𝜎′ ⊢ 𝑣′ : 𝜏) :
Γ, 𝑥 : 𝜎′ ⊢ 𝑣′ : 𝜏 is equal to Γ, 𝑥 : 𝜎′ ⊢ 𝑣[𝑣′/𝑥] : 𝜏 because values cannot contain
free variables.

Case S-Fun (Γ, 𝑥 : 𝜎′ ⊢ 𝜆𝑦. 𝑒 : 𝜏→ 𝜏′) :
If 𝑦 = 𝑥, then (𝜆𝑦. 𝑒)[𝑣/𝑥] is equivalent to 𝜆𝑦. 𝑒 and we’re done. Otherwise,
assume 𝑦 ≠ 𝑥. We have ⌈1⌉ which is equivalent to ⌈2⌉ Γ, 𝑦 : 𝜏, 𝑥 : 𝜎′ ⊢ 𝑒 : 𝜏′

(since 𝑦 ≠ 𝑥). Applying the IH to ⌈2⌉, ⌈3⌉ Γ, 𝑦 : 𝜏, 𝑥 : 𝜎′ ⊢ 𝑒[𝑣/𝑥] : 𝜏′, which is
equivalent to ⌈4⌉ Γ, 𝑥 : 𝜎′, 𝑦 : 𝜏 ⊢ 𝑒[𝑣/𝑥] : 𝜏′. Applying S-Fun to ⌈4⌉, Γ, 𝑥 : 𝜎′ ⊢
𝜆𝑦. (𝑒[𝑣/𝑥]) : 𝜏→ 𝜏′, which is equivalent to Γ, 𝑥 : 𝜎′ ⊢ (𝜆𝑦. 𝑒)[𝑣/𝑥] : 𝜏→ 𝜏′.

Case S-App (Γ, 𝑥 : 𝜎′ ⊢ 𝑒1 𝑒2 : 𝜏2) :
We have ⌈1⌉ Γ, 𝑥 : 𝜎′ ⊢ 𝑒1 : 𝜏1 → 𝜏2 and ⌈2⌉ Γ, 𝑥 : 𝜎′ ⊢ 𝑒2 : 𝜏1. Applying
the IH to ⌈1⌉ and ⌈2⌉, we obtain ⌈3⌉ Γ, 𝑥 : 𝜎′ ⊢ 𝑒1[𝑣/𝑥] : 𝜏1 → 𝜏2 and ⌈4⌉
Γ, 𝑥 : 𝜎′ ⊢ 𝑒2[𝑣/𝑥] : 𝜏1. Applying S-App to ⌈3⌉ and ⌈4⌉, Γ, 𝑥 : 𝜎′ ⊢ (𝑒1 𝑒2)[𝑣/𝑥] : 𝜏2.

Case S-Map (Γ, 𝑥 : 𝜎′ ⊢ map 𝑒1 𝑒2 : []𝜏2) :
We have ⌈1⌉ Γ, 𝑥 : 𝜎′ ⊢ 𝑒1 : 𝜏1 → 𝜏2 and ⌈2⌉ Γ, 𝑥 : 𝜎′ ⊢ 𝑒2 : []𝜏1. Applying the
IH to ⌈1⌉ and ⌈2⌉, we obtain ⌈3⌉ Γ, 𝑥 : 𝜎′ ⊢ 𝑒1[𝑣/𝑥] : 𝜏1 → 𝜏2 and ⌈4⌉ Γ, 𝑥 : 𝜎′ ⊢
𝑒2[𝑣/𝑥] : []𝜏1. Applying S-Map to ⌈3⌉ and ⌈4⌉, Γ), 𝑥 : 𝜎′ ⊢ (map 𝑒1 𝑒2)[𝑣/𝑥] : []𝜏2.

Case S-Rep (Γ, 𝑥 : 𝜎′ ⊢ rep 𝑒 : [] 𝜏) :
We have ⌈1⌉ Γ, 𝑥 : 𝜎′ ⊢ 𝑒 : 𝜏. Applying the IH to ⌈1⌉, ⌈2⌉ Γ, 𝑥 : 𝜎′ ⊢ 𝑒[𝑣/𝑥] : 𝜏.
Applying S-Rep to ⌈2⌉, Γ, 𝑥 : 𝜎′ ⊢ (rep 𝑒)[𝑣/𝑥] : [] 𝜏.

Case S-Def (Γ, 𝑥 : 𝜎′ ⊢ def 𝑓 𝑦 = 𝑒 ; 𝑝 : 𝜎′) :
We have ⌈1⌉ Γ, 𝑦 : 𝜏 ⊢ 𝑒 : 𝜏′, ⌈2⌉ { ®𝛼} ∩ ftv(Γ, 𝜎′) = ∅, and ⌈3⌉ Γ, 𝑓 : ∀®𝛼.𝜏 →
𝜏′ ⊢ 𝑝 : 𝜎′. If 𝑥 = 𝑦, Γ, 𝑥 : 𝜎′ ⊢ (def 𝑓 𝑦 = 𝑒 ; 𝑝)[𝑣/𝑥] : 𝜎′ is equivalent to
Γ, 𝑥 : 𝜎′ ⊢ def 𝑓 𝑦 = 𝑒 ; 𝑝[𝑣/𝑥] : 𝜎′which holds by applying the IH to ⌈2⌉ to obtain
⌈4⌉ Γ, 𝑥 : 𝜎′, 𝑓 : ∀®𝛼.𝜏→ 𝜏′ ⊢ 𝑝[𝑣/𝑥] : 𝜎′ and then applying S-Def to ⌈1⌉, ⌈2⌉, and
⌈4⌉. If 𝑥 ≠ 𝑦, then applying the IH to ⌈2⌉ yields ⌈5⌉ Γ, 𝑦 : 𝜏, 𝑥 : 𝜎′ ⊢ 𝑒[𝑣/𝑥] : 𝜏′,
from which Γ, 𝑥 : 𝜎′ ⊢ (def 𝑓 𝑦 = 𝑒 ; 𝑝)[𝑣/𝑥] : 𝜎′ follows by applying S-Def to
⌈5⌉, ⌈2⌉, and ⌈4⌉.

□

Proposition 4 (Progress). If ⊢ 𝑝 : 𝜎 then either 𝑝 is a value or there exists 𝑝′ such that 𝑝 { 𝑝′.

Proof. If 𝑝 isn’t a value, by Proposition 2 there exists a unique 𝑒′ and 𝐾 such that
𝑒 = 𝐾⟨𝑒′⟩, ⊢ 𝑒′ : 𝜎′, and 𝑒′ is a redex. Because 𝑒′ is a redex, there exists 𝑒′′ such that
𝑒′ { 𝑒′′. Hence, 𝑒 = 𝐾⟨𝑒′⟩ { 𝐾⟨𝑒′′⟩. □

92 APPENDIX A. PROOFS FOR AUTOMAP

Proposition 5 (Preservation). If ⊢ 𝑝 : 𝜎 and 𝑝 { 𝑝′ then ⊢ 𝑝′ : 𝜎.

Proof. By induction over the typing derivation.

Case S-Var :
Impossible because an empty context is assumed.

Case S-Inst (⊢ 𝑒 : 𝜏) :
We have ⌈1⌉ ⊢ 𝑒 : 𝜎, ⌈2⌉ 𝜎 ≥ 𝜏, and ⌈4⌉ 𝑒 { 𝑒′. Applying the IH, to ⌈1⌉ and ⌈4⌉
yields ⌈5⌉ ⊢ 𝑒′ : 𝜎. Applying S-Inst to ⌈5⌉ and ⌈2⌉ yields ⊢ 𝑒′ : 𝜏

Case S-Array (⊢ [𝑒1 , . . . , 𝑒𝑛] : [] 𝜏) :
We have ⌈1⌉ ∀𝑖 ∈ {1, . . . , 𝑛} . ⊢ 𝑒𝑖 : 𝜏 By Proposition 2, there is a 𝜎𝑖 , a unique
context 𝐾, and unique expressions 𝑒, 𝑒′ such that ⌈3⌉ [𝑒1 , . . . , 𝑒𝑛] = 𝐾⟨𝑒⟩, ⌈4⌉
⊢ 𝑒 : 𝜎′, ⌈5⌉ 𝑒 { 𝑒′, and ⌈6⌉ 𝐾⟨𝑒⟩ { 𝐾⟨𝑒′⟩. From the reduction rules, we have
⌈7⌉ 𝐾 = [𝑒1 , . . . , 𝑒𝑖−1 , 𝐾

′, 𝑒𝑖+1 , . . . , 𝑒𝑛] where ⌈8⌉ 𝑒𝑖 = 𝐾′⟨𝑒⟩. By ⌈6⌉ and ⌈7⌉, ⌈9⌉
𝐾′⟨𝑒⟩ { 𝐾′⟨𝑒′⟩. Applying the IH using ⌈1⌉ and ⌈9⌉, we have ⌈10⌉ ⊢ 𝐾′⟨𝑒′⟩ : 𝜎𝑖 .
By ⌈3⌉, ⌈10⌉, and ⌈7⌉we have ⊢ 𝐾⟨𝑒′⟩ : [] 𝜏.

Case S-Val (⊢ 𝑣 : 𝜏) :
𝑣 is a value, so no reduction is possible.

Case S-Fun (⊢ 𝜆𝑥. 𝑒 : 𝜏→ 𝜏′) :
𝜆𝑥. 𝑒 is a function, so no reduction is possible.

Case S-App (⊢ 𝑒1 𝑒2 : 𝜏2) :
We have ⌈1⌉ ⊢ 𝑒1 : 𝜏1 → 𝜏2 and ⌈2⌉ ⊢ 𝑒2 : 𝜏1.

Subcase 𝑒1 isn’t a value :
By Proposition 2, there is a 𝜎, a unique context 𝐾, and unique expressions 𝑒,
𝑒′ such that ⌈3⌉ 𝑒1 𝑒2 = 𝐾⟨𝑒⟩, ⌈4⌉ ⊢ 𝑒 : 𝜎′, ⌈5⌉ 𝑒 { 𝑒′, and ⌈6⌉ 𝐾⟨𝑒⟩ { 𝐾⟨𝑒′⟩.
Since 𝑒1 isn’t a value, by the uniqueness of 𝐾, there exists unique 𝐾′ such that
⌈7⌉ 𝐾 = 𝐾′ 𝑒2, ⌈8⌉ 𝑒1 = 𝐾′⟨𝑒⟩, and ⌈9⌉ 𝐾′⟨𝑒⟩ { 𝐾′⟨𝑒′⟩. Applying the IH to ⌈1⌉
and ⌈9⌉ yields ⌈10⌉ ⊢ 𝐾′⟨𝑒′⟩ : 𝜏1 → 𝜏2. Applying S-App to ⌈9⌉ and ⌈2⌉ yields
⊢ 𝐾⟨𝑒′⟩ : 𝜏2.

Subcase 𝑒1 is a value and 𝑒2 isn’t :
Analogous to the previous case with 𝐾 = 𝑒1 𝐾

′.
Subcase 𝑒1 and 𝑒2 are values :

In this case, 𝑒1 𝑒2 is a redex and the property follows by Proposition 3.

Case S-Map (Γ ⊢ map 𝑒1 𝑒2 : []𝜏2) :
Analogous to S-App except with a map context.

Case S-Rep (Γ ⊢ rep 𝑒 : [] 𝜏) :
We have ⌈1⌉ Γ ⊢ 𝑒 : 𝜏. If 𝑒 is a value, there’s nothing to show, so assume 𝑒 isn’t
a value. The proof proceeds similarly to the other cases, just with the context
𝐾 = rep 𝐾′.

Case S-Def (Γ ⊢ def 𝑓 𝑥 = 𝑒 ; 𝑝 : 𝜎′) :
A def is always a redex and the property follows by Proposition 3.

□

A.6. RANK ANALYSIS 93

A.6 Rank Analysis

A.6.5 Constraint Set Solving
In this section, we prove Proposition 6 and Proposition 7 from chapter 4. To prove the
propositions, we introduce the notion of a closed rank. The closed rank of a closed shape
or closed type, written | · |⊘, denotes the non-negative integral rank of a closed shape
(𝑆⊘) or a closed type (𝜏⊘). It is defined as

|[]|⊘ = 1, |𝑆 𝜏|⊘ = |𝑆|⊘ + |𝜏|⊘ ,
|𝑆1 𝑆2|⊘ = |𝑆1|⊘ + |𝑆2|⊘ , |𝛼|⊘ = 0,
| • |⊘ = 0, |𝜏1 → 𝜏2|⊘ = 0,

|int|⊘ = 0.

Lemma 2. Given a closed substitution 𝑠 and rank substitution 𝑠r, if 𝑠r(𝑄) = 𝑠(𝑄) and

𝑠r(𝛼) = |𝑠(𝛼)|⊘ then |𝑠(𝑆)|⊘ = 𝑠r(|𝑆|) and |𝑠(𝜏)|⊘ = 𝑠r(|𝜏|).

Proof. The first statement, ⌈1⌉ |𝑠(𝑆)|⊘ = 𝑠r(|𝑆|), follows by induction over 𝑆.

Case closed shapes (𝑆⊘) :
Immediate, since |𝑠(𝑆⊘)|⊘ = |𝑆⊘| = 𝑠r(|𝑆⊘|).

Case rank power ([]𝑄) :
We have |𝑠([]𝑄)|⊘ = 𝑠(𝑄) = 𝑠r(𝑄) = 𝑠r(|[]𝑄 |).

Case concatenation (𝑆1 𝑆2) :
We have |𝑠(𝑆1𝑆2)|⊘ = |𝑠(𝑆1)|⊘ + |𝑠(𝑆2)|⊘ = 𝑠r(|𝑆1|) + 𝑠r(|𝑆2|) = 𝑠r(|𝑆1 𝑆2|) by the IH.

The second statement, |𝑠(𝜏)|⊘ = 𝑠r(|𝜏|), follows by induction over 𝜏, using the first
statement.

Case function type (𝜏1 → 𝜏2) :
We have |𝑠(𝜏1 → 𝜏2)|⊘ = |𝑠(𝜏1) → 𝑠(𝜏2)|⊘ = 0 = 𝑠r(0) = 𝑠r(|𝜏1 → 𝜏2|).

Case array type (𝑆′𝜏′) :
By ⌈1⌉, we have ⌈2⌉ |𝑠(𝑆′)|⊘ = 𝑠r(|𝑆′|). By the IH, we have ⌈3⌉ |𝑠(𝜏′)|⊘ = 𝑠r(|𝜏′|).
Combining ⌈2⌉ and ⌈3⌉ gives |𝑠(𝑆′𝜏′)|⊘ = |𝑠(𝑆′)|⊘ + |𝑠(𝜏′)|⊘ = 𝑠r(|𝑆′|) + 𝑠r(|𝜏′|) =
𝑠r(|𝑆′𝜏′|).

Case integer (int) :
Trivial.

Case closed function type (𝜏⊘1 → 𝜏⊘2) :
Analogous to the function type case.

Case closed array type (𝑆⊘′𝜏⊘′) :
Analogous to the array type case.

Case type variable (𝛼) :
We have |𝑠(𝛼)|⊘ = 𝑠r(𝛼) = 𝑠r(|𝛼|).

□

Lemma 3. If 𝑠 satisfies 𝐶 then the rank substitution 𝑠r defined by 𝑠r(𝑄) = 𝑠(𝑄) and 𝑠r(𝛼) =
|𝑠(𝛼)|⊘ satisfies |𝐶|.

94 APPENDIX A. PROOFS FOR AUTOMAP

Proof. Case analysis on the constraints of 𝐶. Since 𝑠 satisfies 𝐶, note that 𝑠|ftv(𝐶) must
be closed.

Case 𝑀 ∨· 𝑅 :
Immediate by the definition of 𝑠r.

Case 𝜏1 � 𝜏2 :
By Lemma 2, |𝑠(𝑆)|⊘ = 𝑠r(|𝑆|) and |𝑠(𝜏)|⊘ = 𝑠r(|𝜏|). Hence, 𝑠r(|𝜏1|) = |𝑠(𝜏1)|⊘ =

|𝑠(𝜏2)|⊘ = 𝑠r(|𝜏2|), as required.

□

Proposition 6. If 𝑠 satisfies 𝐶, there exists a rank substitution 𝑠r that satisfies |𝐶| and there

exists a closed type substitution 𝑠t such that 𝑠|ftv(𝐶)∪frv(𝐶) = 𝑠t ◦ 𝑠r.

Proof. By Lemma 3, the rank substitution 𝑠r defined by 𝑠r(𝑄) = 𝑠(𝑄) and 𝑠r(𝛼) = |𝑠(𝛼)|⊘
satisfies |𝐶|. Define 𝑠t = 𝑠|ftv(𝐶). Since 𝑠 satisfies 𝐶, 𝑠t must be closed (i.e., 𝑠t does not
map any type variables to types with rank variables). Now, (𝑠t ◦ 𝑠r)(𝑄) = 𝑠r(𝑄) = 𝑠(𝑄).
Additionally, (𝑠t ◦ 𝑠r)(𝛼) = 𝑠t(𝛼) = 𝑠|ftv(𝐶)(𝛼) for each 𝛼 ∈ ftv(𝐶). □

Lemma 4. Consider a constraint set 𝐶 and suppose 𝑠 satisfies 𝐶 and 𝑠r satisfies |𝐶|. Define

𝑠′(𝑄) = 𝑠r(𝑄), basetype(𝑆𝜏) = basetype(𝜏),
𝑠′(𝛼) = []

𝑠r(𝛼)basetype(𝑠(𝛼)), basetype(𝜏) = 𝜏.

Then 𝑠′ satisfies 𝐶.

Proof. By case analysis over the constraints of 𝐶.

Case 𝑀 ∨· 𝑅 :
Immediate by the definition of 𝑠′.

Case 𝜏1 � 𝜏2 :
We need to show that ⌈1⌉ basetype(𝑠′(𝜏1)) = basetype(𝑠′(𝜏2)) and ⌈2⌉ |𝑠′(𝜏1)|⊘ =

|𝑠′(𝜏2)|⊘, since this implies 𝑠′(𝜏1) = 𝑠′(𝜏2). ⌈1⌉ is immediate by the definition of 𝑠′
and basetype. Note that 𝑠′ must be closed over 𝐶 because 𝑠r satisfies |𝐶|r and 𝑠

satisfies 𝐶. We have ⌈3⌉ 𝑠r(𝑄) = 𝑠′(𝑄) and ⌈4⌉ 𝑠r(𝛼) = |[]𝑠r(𝛼)basetype(𝑠(𝛼))|⊘ =

|𝑠′(𝛼)|⊘. Applying ⌈3⌉ and ⌈4⌉ to Lemma 2 yields 𝑠r(|𝜏|) = |𝑠′(𝜏)|⊘ for any 𝜏, and
hence ⌈2⌉ reduces to 𝑠r(|𝜏1|) = 𝑠r(|𝜏2|), which follows by the fact that 𝑠r satisfies
|𝐶|.

□

Proposition 7. If 𝐶 is satisfiable and 𝑠r satisfies |𝐶| then there is a closed type substitution 𝑠t
such that the substitution 𝑠 = 𝑠t ◦ 𝑠r satisfies 𝐶.

Proof. Using the construction from Lemma 4, there is a satisfier 𝑠′ of𝐶with 𝑠′(𝑄) = 𝑠r(𝑄)
and |𝑠′(𝛼)|⊘ = 𝑠r(𝛼). Because 𝑠′ satisfies 𝐶, 𝑠′|ftv(𝐶) is closed. Defining 𝑠t = 𝑠′|ftv(𝐶), we
have 𝑠(𝛼) = (𝑠t ◦ 𝑠r)(𝛼) = 𝑠t(𝛼) = 𝑠′(𝛼) for each 𝛼 ∈ ftv(𝐶) and hence 𝑠 = 𝑠t ◦ 𝑠r satisfies
𝐶. □

A.7. TRANSFORMATION TO THE TARGET LANGUAGE 95

A.7 Transformation to the Target Language

A.7.1 Well-Typedness
Lemma 5. If 𝜎 ≥ 𝜏 then 𝑆 𝜎 ≥ 𝑆 𝜏.

Proof. Let 𝜎 = ∀®𝛼.𝜏′. By definition, there exists a type substitution 𝑠t such that dom(𝑠t) =
{ ®𝛼} and 𝑠t(𝜏′) = 𝜏. But then 𝑆𝑠t(𝜏′) = 𝑆𝜏 and hence 𝑠t(𝑆 𝜏′) = 𝑆𝜏 because 𝑠t has no effect
on shapes. □

Proposition 8 (Well-Typedness for Expressions). If Γ ⊢ 𝑒 :𝑆 𝜎 ∥ 𝐶 and 𝑠 is a satisfier of

𝐶, then 𝑠(Γ) ⊢ AM(𝑠(𝑒)) : 𝑠(𝑆 𝜎)
Proof. By induction over the typing derivation.

Case C-Int (⊢ 𝑛 : int ∥ ∅) :
Immediate by the definition of AM.

Case C-Inst (Γ ⊢ 𝑒 : 𝜏 ∥ ∅) :
We have ⌈1⌉ Γ ⊢ 𝑒 : 𝜎 ∥ ∅ and ⌈2⌉ 𝜎 ≥ 𝜏. By the IH, ⌈3⌉ 𝑠(Γ) ⊢ AM(𝑠(𝑒)) : 𝑠(𝑆 𝜎).
Since ≥ is closed, applying 𝑠 to ⌈2⌉ yields ⌈4⌉ 𝑠(𝜎) ≥ 𝑠(𝜏). By Lemma 5 and ⌈4⌉,
⌈5⌉ 𝑠(𝑆𝜎) ≥ 𝑠(𝑆𝜏). Applying S-Inst to ⌈3⌉ and ⌈5⌉ yields 𝑠(Γ) ⊢ AM(𝑠(𝑒)) : 𝑠(𝑆 𝜏)
as required.

Case C-Var (Γ, 𝑥 : 𝜎 ⊢ 𝑥 : 𝜎 ∥ ∅) :
Immediate by the definition of AM.

Case C-Array (Γ ⊢ [𝑒1 , 𝑒2 , . . . , 𝑒𝑛] : []𝑆1𝜏1 ∥ {𝑆1𝜏1 � 𝑆𝑘𝜏𝑘 | 𝑘 ∈ {2, . . . , 𝑛}} ∪ 𝐶1 ∪ · · · ∪ 𝐶𝑛) :

We have ⌈1⌉ ∀𝑘 ∈ {1, . . . , 𝑛} . Γ ⊢ 𝑒𝑘 :𝑆𝑘 𝜏𝑘 ∥ 𝐶𝑘 . Applying the IH to ⌈1⌉ yields ⌈2⌉
∀𝑘 ∈ {1, . . . , 𝑛} . 𝑠(Γ) ⊢ AM(𝑠(𝑒𝑘)) : 𝑠(𝑆𝑘𝜏𝑘). Since 𝑠 satisfies 𝐶, 𝑠(𝑆𝑘𝜏𝑘) = 𝑠(𝑆1𝜏1)
for all 𝑘 ∈ {1, . . . , 𝑛} and hence ⌈3⌉ ∀𝑘 ∈ {1, . . . , 𝑛} . 𝑠(Γ) ⊢ AM(𝑠(𝑒𝑘)) : 𝑠(𝑆1𝜏1).
Applying S-Array to ⌈3⌉ yields 𝑠(Γ) ⊢ AM([𝑒1 , . . . , 𝑒𝑛]) : 𝑠([] 𝑆1𝜏1).

Case C-App (Γ ⊢ 𝑒1 𝑒2 △ (𝑀, 𝑅) :
[]

𝑀
𝑆1

𝜏2 ∥ 𝐶 ∪ 𝐶1 ∪ 𝐶2) :
We have ⌈1⌉ Γ ⊢ 𝑒1 :𝑆1 𝜏1 → 𝜏2 ∥ 𝐶1, ⌈2⌉ Γ ⊢ 𝑒2 :𝑆2 𝜏3 ∥ 𝐶2, and ⌈3⌉
𝐶 = {𝑀 ∨· 𝑅, []

𝑀 𝑆1 𝜏1 � []
𝑅 𝑆2 𝜏3}. Applying the IH to ⌈1⌉ and ⌈2⌉, we have ⌈4⌉

𝑠(Γ) ⊢ AM(𝑠(𝑒1)) : 𝑠(𝑆1𝜏1) → 𝑠(𝑆1𝜏2) and ⌈5⌉ 𝑠(Γ) ⊢ AM(𝑠(𝑒2)) : 𝑠(𝑆2𝜏3). Since 𝑠
satisfies𝐶, we also have ⌈6⌉ 𝑠(𝑀) = 0 or 𝑠(𝑅) = 0 and ⌈7⌉ 𝑠([]𝑀 𝑆1 𝜏1) = 𝑠([]𝑅 𝑆2 𝜏3).
We now case on ⌈6⌉.

Subcase 𝑠(𝑅) = 0 :
By ⌈7⌉, we have ⌈8⌉ 𝑠([]

𝑀𝑆1 𝜏1) = 𝑠(𝑆2 𝜏3). By ⌈5⌉ and ⌈8⌉
we have ⌈9⌉ 𝑠(Γ) ⊢ AM(𝑠(𝑒2)) : 𝑠([]

𝑀𝑆1 𝜏1). Starting with
⌈4⌉ and ⌈9⌉ and applying the S-Map rule 𝑀 times, we have 𝑠(Γ) ⊢
map𝑠(𝑀) AM(𝑠(𝑒1)) AM(𝑠(𝑒2)) : 𝑠([]

𝑀𝑆1 𝜏2) which, by the definition of
AM, is the same as 𝑠(Γ) ⊢ AM(𝑠(𝑒1 𝑒2 △ (𝑀, 𝑅))) : 𝑠([]𝑀𝑆1 𝜏2).

Subcase 𝑠(𝑀) = 0 :
By ⌈7⌉, we have ⌈8⌉ 𝑠(𝑆1 𝜏1) = 𝑠([]

𝑅 𝑆2 𝜏3). By ⌈4⌉ and ⌈8⌉
we have ⌈9⌉ 𝑠(Γ) ⊢ AM(𝑠(𝑒1)) : 𝑠([]𝑅 𝑆2 𝜏3) → 𝑠(𝑆1𝜏2). Starting with
⌈5⌉ and applying the S-Rep rule 𝑅 times, we have ⌈10⌉ 𝑠(Γ) ⊢
rep𝑅 AM(𝑠(𝑒2)) : 𝑠([]

𝑅𝑆2𝜏3). Applying S-App to ⌈9⌉ and ⌈10⌉ yields
𝑠(Γ) ⊢ AM(𝑠(𝑒1)) (rep𝑅 AM(𝑠(𝑒2))) : 𝑠(𝑆1𝜏2) which is the same as
𝑠(Γ) ⊢ AM(𝑠(𝑒1 𝑒2 △ (𝑀, 𝑅))) : 𝑠(𝑆1𝜏2) by the definition of AM.

96 APPENDIX A. PROOFS FOR AUTOMAP

Case C-Fun (Γ ⊢ 𝜆𝑥. 𝑒 : 𝜏1 → 𝑆 𝜏2 ∥ 𝐶) :
We have ⌈1⌉ Γ, 𝑥 : 𝜏1 ⊢ 𝑒 :𝑆 𝜏2 ∥ 𝐶. Applying the IH to ⌈1⌉, ⌈2⌉ 𝑠(Γ, 𝑥 : 𝜏1) ⊢
AM(𝑠(𝑒)) : 𝑠(𝑆𝜏2) Applying S-Fun to ⌈2⌉, 𝑠(Γ) ⊢ AM(𝑠(𝜆𝑥. 𝑒)) : 𝑠(𝜏1) → 𝑠(𝑆𝜏2)

Case C-Map (Γ ⊢ map 𝑒1 𝑒2 :[]𝑆1
𝜏2 ∥ {[]𝑆1𝜏1 � 𝑆2𝜏3} ∪ 𝐶1 ∪ 𝐶2) :

We have ⌈1⌉ Γ ⊢ 𝑒1 :𝑆1 𝜏1 → 𝜏2 ∥ 𝐶1 and ⌈2⌉ Γ ⊢ 𝑒2 :𝑆2 𝜏3 ∥ 𝐶2. Apply-
ing the IH to ⌈1⌉ and ⌈2⌉, we have ⌈3⌉ 𝑠(Γ) ⊢ AM(𝑠(𝑒1)) : 𝑠(𝑆1𝜏1) → 𝑠(𝑆1𝜏2)
and ⌈4⌉ 𝑠(Γ) ⊢ AM(𝑠(𝑒2)) : 𝑠(𝑆2𝜏3). Since 𝑠([]𝑆1𝜏1) = 𝑠(𝑆2𝜏3), by ⌈4⌉
we have ⌈5⌉ 𝑠(Γ) ⊢ AM(𝑠(𝑒2)) : 𝑠([]𝑆1𝜏1). Applying S-Map to ⌈3⌉ and
⌈5⌉, 𝑠(Γ) ⊢ map AM(𝑠(𝑒1)) AM(𝑠(𝑒2)) : []𝑠(𝑆1𝜏2), which is the same as
𝑠(Γ) ⊢ AM(𝑠(map 𝑒1 𝑒2)) : 𝑠([]𝑆1𝜏2).

Case C-Rep (Γ ⊢ rep 𝑒 : []𝑆𝜏 ∥ 𝐶) :
We have ⌈1⌉ Γ ⊢ 𝑒 :𝑆 𝜏 ∥ 𝐶. Applying the IH to ⌈1⌉, we have ⌈2⌉ 𝑠(Γ) ⊢
AM(𝑠(𝑒)) : 𝑠(𝑆𝜏). Applying S-Rep to ⌈2⌉, we have 𝑠(Γ) ⊢ repAM(𝑠(𝑒)) : [] 𝑠(𝑆𝜏),
which is the same as 𝑠(Γ) ⊢ AM(𝑠(rep 𝑒)) : 𝑠([] 𝑆𝜏).

□

Proposition 9 (Well-Typedness). If Γ ⊢ 𝑝 : 𝜎 then Γ ⊢ AM(𝑝) : 𝜎.

Proof. By induction on Γ ⊢ 𝑝 : 𝜎.

Case C-Def (Γ ⊢ def 𝑓 𝑥 = 𝑠(𝑒) ; 𝑝 : 𝜎′) :
We have ⌈1⌉ Γ, 𝑥 : 𝜏 ⊢ 𝑒 : 𝜏′ ∥ 𝐶, ⌈2⌉ 𝑠 satisfies 𝐶, ⌈3⌉ { ®𝛼} ∩ ftv(𝑠(Γ), 𝜎′) = ∅,
⌈4⌉ 𝑠(Γ), 𝑓 : ∀®𝛼.𝑠(𝜏) → 𝑠(𝜏′) ⊢ 𝑝 : 𝜎′. Applying the IH on ⌈4⌉ yields ⌈5⌉
𝑠(Γ), 𝑓 : ∀®𝛼.𝑠(𝜏) → 𝑠(𝜏′) ⊢ AM(𝑝) : 𝜎′ and applying Proposition 8 on ⌈1⌉ using
⌈2⌉ yields ⌈6⌉ 𝑠(Γ, 𝑥 : 𝜏) ⊢ AM(𝑠(𝑒)) : 𝑠(𝜏′). Applying S-Def to ⌈6⌉, ⌈3⌉, and ⌈5⌉
yields 𝑠(Γ) ⊢ def 𝑓 𝑥 = AM(𝑠(𝑒)) ; AM(𝑝) : 𝜎′.

□

A.7.2 Backwards Consistency
Lemma 6. If Γ ⊢ 𝒦⟨𝑒⟩ :𝑆 𝜎 ∥ 𝐶 then there exists 𝜎′, 𝑆′, and 𝐶′ such that Γ ⊢ 𝑒 :𝑆′ 𝜎′ ∥ 𝐶′.

Proof. By induction on 𝒦 . We only show a couple of cases; the remaining cases are
analogous and follow by the IH.

Case 𝒦 = ⟨·⟩ :
Immediate.

Case 𝒦 = 𝒦 ′ 𝑒2 △ (𝑀, 𝑅) :
We have ⌈1⌉ Γ ⊢ 𝒦 ′⟨𝑒⟩ 𝑒2 △ (𝑀, 𝑅) :𝑆 𝜎 ∥ 𝐶. By inversion of C-App, there exists
𝜏1, 𝜏2, 𝐶1, and 𝑆1 such that ⌈2⌉ Γ ⊢ 𝒦 ′⟨𝑒⟩ :𝑆1 𝜏1 → 𝜏2 ∥ 𝐶1. Applying the IH to
⌈2⌉ yields the required result.

□

Proposition 10 (Removal Well-Typedness). If𝒦⟨𝑒⟩ ≺rem 𝒦⟨𝑒′⟩ and Γ ⊢ 𝒦⟨𝑒⟩ :𝑆 𝜎 ∥ 𝐶
then there exists 𝑆′, 𝜎′, and 𝐶′ such that

(a) Γ ⊢ 𝒦⟨𝑒′⟩ :𝑆′ 𝜎′ ∥ 𝐶′.

(b) If 𝑠r satisfies |𝐶|, then there exists 𝑠′r such that 𝑠r ◦ 𝑠′r satisfies |𝐶′|.

A.7. TRANSFORMATION TO THE TARGET LANGUAGE 97

(c) 𝑠r(𝐶) ≃ (𝑠r ◦ 𝑠′r)(𝐶′).

Proof. By inversion on the removal relation, we have ⌈1⌉ 𝑀, 𝑅 fresh. We proceed by
induction on 𝒦 .

Case 𝒦 = ⟨·⟩ :
We proceed by cases on the removal relation.

Subcase Rem-Map (map 𝑒1 𝑒2 ≺rem 𝑒1 𝑒2 △ (𝑀, 𝑅)) :
We have ⌈2⌉ map 𝑒1 𝑒2 ≺rem 𝑒1 𝑒2 △ (𝑀, 𝑅) and ⌈3⌉ Γ ⊢ map 𝑒1 𝑒2 :𝑆 𝜎 ∥ 𝐶.
By inversion of ⌈3⌉, there exists 𝜏1, 𝜏2, 𝐶1, 𝐶2, 𝑆2 such that ⌈4⌉ Γ ⊢ 𝑒1 :𝑆 𝜏1 →
𝜏2 ∥ 𝐶1, ⌈5⌉ Γ ⊢ 𝑒2 :𝑆2 𝜏3 ∥ 𝐶2, ⌈6⌉ 𝐶 = {[]𝑆𝜏1 � 𝑆2𝜏3} ∪ 𝐶1 ∪ 𝐶2, and ⌈7⌉
𝜏2 = 𝜎. Define ⌈8⌉ 𝐶′′ = {𝑀 ∨· 𝑅, []𝑀 𝑆 𝜏1 � []

𝑅 𝑆2 𝜏2}.
(a) Applying C-App to ⌈1⌉, ⌈4⌉, ⌈5⌉, and ⌈8⌉ yields ⌈9⌉ Γ ⊢

𝑒1 𝑒2 △ (𝑀, 𝑅) :
[]

𝑀
𝑆

𝜏2 ∥ 𝐶′′ ∪ 𝐶1 ∪ 𝐶2, which is the same as
Γ ⊢ 𝒦⟨𝑒′⟩ :𝑆′ 𝜎′ ∥ 𝐶′ with 𝑒′ = 𝑒1 𝑒2 △ (𝑀, 𝑅), 𝑆′ = []

𝑀𝑆, 𝜎′ = 𝜏2, and
𝐶′ = 𝐶′′ ∪ 𝐶1 ∪ 𝐶2.

(b) Suppose 𝑠r satisfies |𝐶|. The only difference between 𝐶 and 𝐶′ is that
𝐶 contains {[]𝑆𝜏1 � 𝑆2𝜏3} whereas 𝐶′ contains {𝑀 ∨· 𝑅, []

𝑀 𝑆 𝜏1 �
[]

𝑅 𝑆2 𝜏2}. Define 𝑠′r = [𝑀 ↦→ 1, 𝑅 ↦→ 0]. Then, ⌈10⌉ 𝑠′r(|{𝑀 ∨·
𝑅, []

𝑀 𝑆 𝜏1 � []
𝑅 𝑆2 𝜏2}|) = {1 ∨· 0, |[]

𝑀 𝑆 𝜏1 � []
𝑅 𝑆2 𝜏2|}, which

is clearly satisfied by 𝑠r.
(c) By ⌈10⌉, the only difference between 𝑠r(𝐶) and (𝑠r ◦ 𝑠′r)(𝐶′) is that the

latter contains the additional variable-free constraint 1 ∨· 0, which is
trivially satisfied by any substitution.

Subcase Rem-Rep (rep 𝑒 ≺rem (𝜆𝑥. 𝑥) 𝑒 △ (𝑀, 𝑅)) :
We have ⌈2⌉ rep 𝑒 ≺rem (𝜆𝑥. 𝑥) 𝑒 △ (𝑀, 𝑅) and ⌈3⌉ Γ ⊢ rep 𝑒 : 𝜎 ∥ 𝐶.
By inversion of ⌈3⌉, there exists 𝜏 and 𝑆1 with 𝜎 = []𝑆1𝜏 such that ⌈4⌉
Γ ⊢ 𝑒 :𝑆1 𝜏 ∥ 𝐶. By C-Fun, we have ⌈5⌉ Γ ⊢ 𝜆𝑥. 𝑥 : 𝛼 → 𝛼 ∥ ∅, where 𝛼
can be chosen fresh. Define ⌈6⌉ 𝐶′′ = {𝑀 ∨· 𝑅, []𝑀 𝛼 � []

𝑅 𝑆1 𝜏}.
(a) Applying C-App to ⌈1⌉, ⌈4⌉, ⌈5⌉, and ⌈6⌉ yields ⌈9⌉ Γ ⊢

id 𝑒 △ (𝑀, 𝑅) :
[]

𝑀 𝛼 ∥ 𝐶′′ ∪ 𝐶, as required.
(b) Suppose 𝑠r satisfies |𝐶|. The only difference between 𝐶 and 𝐶′ is that

𝐶′ additionally contains the constraints of ⌈6⌉ (i.e., {𝑀 ∨· 𝑅, []
𝑀 𝛼 �

[]
𝑅 𝑆1 𝜏}). Define 𝑠′r = [𝑀 ↦→ 0, 𝑅 ↦→ 1, 𝛼 ↦→ |[] 𝑆1 𝜏]]. Then, ⌈10⌉

𝑠′r(|{𝑀 ∨· 𝑅, []
𝑀 𝛼 � []

𝑅 𝑆1 𝜏})| = {0 ∨· 1, 𝛼 � |[] 𝑆1 𝜏|}, which is
obviously satisfied by 𝑠r.

(c) Since 𝛼 can always be chosen uniquely fresh, we assume that it only
appears in the constraint 𝛼 � [] 𝑆1 𝜏 (and hence can be trivially satisfied
by the mapping 𝛼 ↦→ [] 𝑆1 𝜏). Since both constraints of ⌈10⌉ are always
satisfiable, we conclude that 𝐶 and 𝐶′ are equivalent.

Case 𝒦 = rep 𝒦 ′ :
We have ⌈2⌉ rep 𝒦 ′⟨𝑒⟩ ≺rem rep 𝒦 ′⟨𝑒′⟩ and ⌈3⌉ Γ ⊢ rep 𝒦 ′⟨𝑒⟩ :𝑆 𝜎 ∥ 𝐶.
⌈2⌉ implies ⌈4⌉ 𝒦 ′⟨𝑒⟩ ≺rem 𝒦 ′⟨𝑒′⟩ by the definition of the removal relation. By
Lemma 6, there exists 𝑆′, 𝜎′, and 𝐶′ such that ⌈5⌉ Γ ⊢ 𝑒 :𝑆′ 𝜎′ ∥ 𝐶′.

(a) Applying the IH to ⌈4⌉ and ⌈5⌉, there exists 𝑆′′, 𝜎′′, and 𝐶′′ such that
⌈5⌉ Γ ⊢ 𝒦 ′⟨𝑒′⟩ :𝑆′′ 𝜎′′ ∥ 𝐶′′. Applying C-Rep to ⌈5⌉ yields Γ ⊢
rep 𝒦 ′⟨𝑒′⟩ : [] 𝑆′′ 𝜎′′ ∥ 𝐶′′.

98 APPENDIX A. PROOFS FOR AUTOMAP

(b) Suppose 𝑠r satisfies |𝐶|. Applying the IH to ⌈5⌉ says that there exists 𝑠′r such
that 𝑠r ◦ 𝑠′r satisfies |𝐶′′|.

(c) Immediate by the inductive hypothesis since the rep constructor does not
augment the constraint set.

The remaining context cases are analogous to the 𝒦 = rep 𝒦 ′ case and are proved by
invoking the inductive hypothesis. □

Proposition 11 (Backwards Consistency). If 𝒦⟨𝑒⟩ ≺rem 𝒦⟨𝑒′⟩, Γ ⊢ 𝒦⟨𝑒⟩ :𝑆 𝜎 ∥ 𝐶,

and 𝑠r is unambiguous at size 𝑘 for |𝐶|, then there exists 𝑆′, 𝜎′, 𝐶′, 𝑠′r such that

Γ ⊢ 𝒦⟨𝑒′⟩ :𝑆′ 𝜎′ ∥ 𝐶′ and 𝑠′r is unambiguous at size 𝑘 + 1 for |𝐶′| with AM(𝑠r(𝒦⟨𝑒⟩)) =
AM(𝑠′r(𝒦⟨𝑒′⟩)).

Proof. By Proposition 10, there exists by 𝑆′, 𝜎′, 𝐶′, 𝑠′r such that Γ ⊢ 𝒦⟨𝑒′⟩ :𝑆′ 𝜎′ ∥ 𝐶′.
We proceed by induction on 𝒦 .

Case 𝒦 = ⟨·⟩ :
We proceed by cases on the removal relation.

Subcase Rem-Map (map 𝑒1 𝑒2 ≺rem 𝑒1 𝑒2 △ (𝑀, 𝑅)) :
By the definition of AM, we have ⌈1⌉ AM(𝑠r(𝒦⟨𝑒⟩)) =

AM(𝑠r(map 𝑒1 𝑒2)) = map AM(𝑠r(𝑒1)) AM(𝑠r(𝑒2)) and ⌈2⌉ AM(𝑠′r(𝒦⟨𝑒′⟩)) =
AM(𝑠′r(𝑒1 𝑒2 △ (𝑀, 𝑅))) = map𝑠

′
r(𝑀) AM(𝑠′r(𝑒1)) (rep𝑠

′
r(𝑅) AM(𝑠′r(𝑒2))). By

Proposition 10, there exists 𝑠′r such that 𝑠r ◦ 𝑠′r satisfies |𝐶′| and by the
construction in the proof, one such possibility is 𝑠′r = [𝑀 ↦→ 1, 𝑅 ↦→ 0].
But then clearly size(𝑠r ◦ 𝑠r , |𝐶′|) = 𝑘 + 1 (because size(𝑠r , |𝐶|) = 1 and the
constraint sets only differ on the constraints introduced by the map removal),
which requires that ⌈3⌉ 𝑠′r = 𝑠r ◦ 𝑠r because 𝑠′r is unambiguous at size 𝑘+1 for
|𝐶′|. Hence, by ⌈1⌉ and ⌈2⌉, AM(𝑠r(𝒦⟨𝑒⟩)) = map AM(𝑠r(𝑒1)) AM(𝑠r(𝑒2)) =
map𝑠

′
r(𝑀) AM(𝑠′r(𝑒1)) (rep𝑠

′
r(𝑅) AM(𝑠′r(𝑒2))) = AM(𝑠′r(𝒦⟨𝑒′⟩)).

Subcase Rem-Rep (rep 𝑒 ≺rem (𝜆𝑥. 𝑥) 𝑒 △ (𝑀, 𝑅)) :
By the definition of AM, we have ⌈1⌉ AM(𝑠r(𝒦⟨𝑒⟩)) = AM(𝑠r(rep 𝑒)) =
rep AM(𝑠r(𝑒)) and ⌈2⌉ AM(𝑠′r(𝒦⟨𝑒′⟩)) = AM(𝑠′r((𝜆𝑥. 𝑥) 𝑒 △ (𝑀, 𝑅))) =

map𝑠
′
r(𝑀) 𝜆𝑥. 𝑥 (rep𝑠′r(𝑅) AM(𝑠′r(𝑒))). As with the Rem-Map case, we

use the 𝑠′r construction of Proposition 10 and the unambiguity of 𝑠′r
to argue that 𝑠′r = 𝑠r ◦ 𝑠r. Hence, by ⌈1⌉ and ⌈2⌉, AM(𝑠r(𝒦⟨𝑒⟩)) =

rep AM(𝑠r(𝑒)) = rep𝑠
′
r(𝑅) AM(()𝑠′r(𝑒)) = rep𝑠

′
r(𝑅) AM(()𝑠′r(𝑒)) =

map𝑠
′
r(𝑀) 𝜆𝑥. 𝑥 (rep𝑠′r(𝑅) AM(𝑠′r(𝑒))) = AM(𝑠′r(𝒦⟨𝑒′⟩)).

Case 𝒦 = rep 𝒦 ′ :
By the definition of AM, we have ⌈1⌉ AM(𝑠r(rep 𝒦 ′⟨𝑒⟩)) = rep AM(𝑠r(𝒦 ′⟨𝑒⟩)).
Since rep𝒦 ′⟨𝑒⟩ ≺rem rep𝒦 ′⟨𝑒′⟩, ⌈2⌉ 𝒦 ′⟨𝑒⟩ ≺rem 𝒦 ′⟨𝑒′⟩ by the definition of the
removal relation. Additionally, by inversion on C-Rep, there exists 𝜏 and 𝑆1 with
𝜎 = []𝑆1𝜏 such that ⌈3⌉ Γ ⊢ 𝒦 ′⟨𝑒⟩ :𝑆1 𝜏 ∥ 𝐶 and, similarly, there exists 𝜏′ and 𝑆′1
with 𝜎′ = []𝑆′1𝜏

′ such that ⌈4⌉ Γ ⊢ 𝒦 ′⟨𝑒′⟩ :𝑆′1 𝜏′ ∥ 𝐶′. Hence, applying the IH to
⌈2⌉, ⌈3⌉, and ⌈4⌉, we have that ⌈5⌉ AM(𝑠r(𝒦 ′⟨𝑒⟩)) = AM(𝑠′r(𝒦 ′⟨𝑒′⟩)). Combining
⌈1⌉ and ⌈5⌉ yields AM(𝑠r(𝒦⟨𝑒⟩)) = rep AM(𝑠r(𝒦 ′⟨𝑒⟩)) = rep AM(𝑠′r(𝒦 ′⟨𝑒′⟩)) =
AM(𝑠′r(𝒦⟨𝑒′⟩)), as required.

The remaining cases are all similar to the𝒦 = rep𝒦 ′ case and involve applying the IH
appropriately. □

A.7. TRANSFORMATION TO THE TARGET LANGUAGE 99

A.7.3 Forwards Consistency
Proposition 12 (Forwards Consistency). If 𝒦⟨𝑒⟩ ≻add 𝒦⟨𝑒′⟩ then AM(𝒦⟨𝑒⟩) =

AM(𝒦⟨𝑒′⟩).

Proof. We proceed by induction on 𝒦 .

Case 𝒦 = ⟨·⟩ :
We proceed by cases on the add relation.

Subcase Add-Map (𝑒1 𝑒2 △ (𝑛M + 1, 𝑛R) ≻add (map 𝑒1) 𝑒2 △ (𝑛M , 𝑛R)) :
By the definition of AM, we have ⌈1⌉ AM(𝒦⟨𝑒⟩) =

AM(𝑒1 𝑒2 △ (𝑛𝑀 + 1, 𝑛𝑅)) = map𝑛M+1 AM(𝑒1) (rep𝑛R AM(𝑒2))
and ⌈2⌉ AM(𝒦⟨𝑒′⟩) = map𝑛M AM(map 𝑒1) (rep𝑛R AM(𝑒2)) =

map𝑛M+1 AM(𝑒1) (rep𝑛R AM(𝑒2))
Subcase Add-Rep (𝑒1 𝑒2 △ (𝑛M , 𝑛R + 1) ≻add 𝑒1 (rep 𝑒2) △ (𝑛M , 𝑛R)) :

By the definition of AM, we have ⌈1⌉ AM(𝒦⟨𝑒⟩) =

AM(𝑒1 𝑒2 △ (𝑛𝑀 , 𝑛𝑅 + 1)) = map𝑛M AM(𝑒1) (rep𝑛R+1 AM(𝑒2))
and ⌈2⌉ AM(𝒦⟨𝑒′⟩) = map𝑛M AM(𝑒1) (rep𝑛R AM(rep 𝑒2)) =

map𝑛M AM(𝑒1) (rep𝑛R+1 AM(𝑒2))

Case 𝒦 = rep 𝒦 ′ :
By the definition of AM, we have ⌈1⌉ AM(rep 𝒦 ′⟨𝑒⟩) = rep AM(𝒦 ′⟨𝑒⟩).
Since rep𝒦 ′⟨𝑒⟩ ≻add rep𝒦 ′⟨𝑒′⟩, ⌈2⌉ 𝒦 ′⟨𝑒⟩ ≻add 𝒦 ′⟨𝑒′⟩ by the definition of the
add relation. By the IH, ⌈3⌉AM(𝒦 ′⟨𝑒⟩) = AM(𝒦 ′⟨𝑒′⟩) and hence by the definition
of AM, we have AM(𝒦⟨𝑒⟩) = AM(𝒦⟨𝑒′⟩) as required.

The remaining inductive cases are analogous. □

	Introduction
	Scientific Programming Languages
	Futhark
	Automatic Differentiation
	Rank Polymorphism

	Background
	Futhark
	Language
	Basics
	SOACs

	Parallel Automatic Differentiation
	Introduction
	Preliminaries
	Forward mode
	Reverse mode
	AD Interface
	Source Language
	Example: k-means

	Reverse Mode AD by Redundant Execution
	Transformation Rules Across Scopes
	Reverse Mode Transformation for Loops
	Perfect Nests Do Not Incur Redundant Execution

	Rewrite Rules for Parallel Constructs
	Reduce
	Histogram
	Scan
	Parallel Scatter
	Map

	Implementation and Optimizations
	Optimizing Accumulators
	Loop Optimizations and Limitations

	Experimental Evaluation
	Parallel Hardware and Methodology
	ADBench: Sequential AD Overhead
	Comparison with Enzyme
	Case Study 1: Dense k-means Clustering
	Case Study 2: Sparse k-means Clustering
	Case Study 3: GMM
	Case Study 4: LSTM
	Depth and Memory Consumption

	Related Work
	Conclusions

	Automap
	Introduction
	Motivation
	Idea
	Examples
	Desired Properties

	Formalization
	Preliminaries and Language Grammars

	Target Language
	Internal Language
	Constraints
	Internal Type System

	Rank Analysis
	Rank
	Rank Constraints
	Size and Ambiguity
	Rank Constraint Set Solving using Integer Linear Programming
	Constraint Set Solving

	Transformation to the Target Language
	Well-Typedness
	Backwards Consistency
	Forwards Consistency

	Implementation
	Constraint Generation
	ILP Solving
	Residual Solving
	Elaboration

	Evaluation
	Quantifying maps
	Impact on Type Checking
	Programmer Experience

	Future Work
	Higher-order Functions
	Solving Constraints Locally
	Efficient Ambiguity Checking

	Related Work
	Data Parallelism
	Type Systems and Type Inference
	Implicit Program Constructs

	Conclusions

	Future Third Things
	Bibliography
	Proofs for Automap
	Target Language
	Rank Analysis
	Constraint Set Solving

	Transformation to the Target Language
	Well-Typedness
	Backwards Consistency
	Forwards Consistency

