
Two Things I Did:
Parallel Differentiation and Rank Polymorphism

Robert Schenck

March 18th, 2025

Overview

This talk is about two things I did during my PhD studies:

▶ Thing #1: parallel automatic differentiation:

f (x) f ′(x)AD

▶ Thing #2: (pseudo-)rank polymorphism in a statically-typed language:[
1 2
3 4

]
+ 5 map (map (+))

[
1 2
3 4

] [
5 5
5 5

]
AUTOMAP

How are these things related?
▶ Well, they are and aren’t—both features belong in scientific

programming languages.
▶ Scientific programming is about adopting mathematics for (efficient)

computation with a computer.

Overview

This talk is about two things I did during my PhD studies:
▶ Thing #1: parallel automatic differentiation:

f (x) f ′(x)AD

▶ Thing #2: (pseudo-)rank polymorphism in a statically-typed language:[
1 2
3 4

]
+ 5 map (map (+))

[
1 2
3 4

] [
5 5
5 5

]
AUTOMAP

How are these things related?
▶ Well, they are and aren’t—both features belong in scientific

programming languages.
▶ Scientific programming is about adopting mathematics for (efficient)

computation with a computer.

Overview

This talk is about two things I did during my PhD studies:
▶ Thing #1: parallel automatic differentiation:

f (x) f ′(x)AD

▶ Thing #2: (pseudo-)rank polymorphism in a statically-typed language:[
1 2
3 4

]
+ 5 map (map (+))

[
1 2
3 4

] [
5 5
5 5

]
AUTOMAP

How are these things related?
▶ Well, they are and aren’t—both features belong in scientific

programming languages.
▶ Scientific programming is about adopting mathematics for (efficient)

computation with a computer.

Overview

This talk is about two things I did during my PhD studies:
▶ Thing #1: parallel automatic differentiation:

f (x) f ′(x)AD

▶ Thing #2: (pseudo-)rank polymorphism in a statically-typed language:[
1 2
3 4

]
+ 5 map (map (+))

[
1 2
3 4

] [
5 5
5 5

]
AUTOMAP

How are these things related?

▶ Well, they are and aren’t—both features belong in scientific
programming languages.

▶ Scientific programming is about adopting mathematics for (efficient)
computation with a computer.

Overview

This talk is about two things I did during my PhD studies:
▶ Thing #1: parallel automatic differentiation:

f (x) f ′(x)AD

▶ Thing #2: (pseudo-)rank polymorphism in a statically-typed language:[
1 2
3 4

]
+ 5 map (map (+))

[
1 2
3 4

] [
5 5
5 5

]
AUTOMAP

How are these things related?
▶ Well, they are and aren’t—both features belong in scientific

programming languages.

▶ Scientific programming is about adopting mathematics for (efficient)
computation with a computer.

Overview

This talk is about two things I did during my PhD studies:
▶ Thing #1: parallel automatic differentiation:

f (x) f ′(x)AD

▶ Thing #2: (pseudo-)rank polymorphism in a statically-typed language:[
1 2
3 4

]
+ 5 map (map (+))

[
1 2
3 4

] [
5 5
5 5

]
AUTOMAP

How are these things related?
▶ Well, they are and aren’t—both features belong in scientific

programming languages.
▶ Scientific programming is about adopting mathematics for (efficient)

computation with a computer.

Scientific Programming

Desirables for a scientific programming language:

▶ High-level of abstraction:
▶ Should support the writing of mathematics as programs easily.
▶ Program transformations/optimizations should be simple to express.

▶ Principled:
▶ Programming model should follow simple rules and be unsurprising.

▶ Fast:
▶ Gotta go fast!!

FORTRAN/C APL NumPy ?
High-level ✗ ✓ ✓ ✓

Principled ✗ ✓ ✗ ✓

Fast ✓ ? ? ✓

Scientific Programming

Desirables for a scientific programming language:
▶ High-level of abstraction:

▶ Should support the writing of mathematics as programs easily.
▶ Program transformations/optimizations should be simple to express.

▶ Principled:
▶ Programming model should follow simple rules and be unsurprising.

▶ Fast:
▶ Gotta go fast!!

FORTRAN/C APL NumPy ?
High-level ✗ ✓ ✓ ✓

Principled ✗ ✓ ✗ ✓

Fast ✓ ? ? ✓

Scientific Programming

Desirables for a scientific programming language:
▶ High-level of abstraction:

▶ Should support the writing of mathematics as programs easily.
▶ Program transformations/optimizations should be simple to express.

▶ Principled:
▶ Programming model should follow simple rules and be unsurprising.

▶ Fast:
▶ Gotta go fast!!

FORTRAN/C APL NumPy ?
High-level ✗ ✓ ✓ ✓

Principled ✗ ✓ ✗ ✓

Fast ✓ ? ? ✓

Scientific Programming

Desirables for a scientific programming language:
▶ High-level of abstraction:

▶ Should support the writing of mathematics as programs easily.
▶ Program transformations/optimizations should be simple to express.

▶ Principled:
▶ Programming model should follow simple rules and be unsurprising.

▶ Fast:
▶ Gotta go fast!!

FORTRAN/C APL NumPy ?
High-level ✗ ✓ ✓ ✓

Principled ✗ ✓ ✗ ✓

Fast ✓ ? ? ✓

Scientific Programming

Desirables for a scientific programming language:
▶ High-level of abstraction:

▶ Should support the writing of mathematics as programs easily.
▶ Program transformations/optimizations should be simple to express.

▶ Principled:
▶ Programming model should follow simple rules and be unsurprising.

▶ Fast:
▶ Gotta go fast!!

FORTRAN/C APL NumPy ?
High-level ✗ ✓ ✓ ✓

Principled ✗ ✓ ✗ ✓

Fast ✓ ? ? ✓

Futhark

Both things (i.e., Thing #1 and Thing #2) were implemented as
extensions to the Futhark programming language.

Futhark is...
▶ Statically typed (with parametric polymorphism):

id : α→ α = λx. x

▶ A data-parallel functional array language.
▶ Uses a library of parallel operators to build parallel-by-construction

programs: map, reduce, scan, hist, ...

Example

def dotprod x y = reduce (+) 0 (map (*) x y)

Futhark

Both things (i.e., Thing #1 and Thing #2) were implemented as
extensions to the Futhark programming language.
Futhark is...

▶ Statically typed (with parametric polymorphism):

id : α→ α = λx. x

▶ A data-parallel functional array language.
▶ Uses a library of parallel operators to build parallel-by-construction

programs: map, reduce, scan, hist, ...

Example

def dotprod x y = reduce (+) 0 (map (*) x y)

Futhark

Both things (i.e., Thing #1 and Thing #2) were implemented as
extensions to the Futhark programming language.
Futhark is...
▶ Statically typed (with parametric polymorphism):

id : α→ α = λx. x

▶ A data-parallel functional array language.
▶ Uses a library of parallel operators to build parallel-by-construction

programs: map, reduce, scan, hist, ...

Example

def dotprod x y = reduce (+) 0 (map (*) x y)

Futhark

Both things (i.e., Thing #1 and Thing #2) were implemented as
extensions to the Futhark programming language.
Futhark is...
▶ Statically typed (with parametric polymorphism):

id : α→ α = λx. x

▶ A data-parallel functional array language.
▶ Uses a library of parallel operators to build parallel-by-construction

programs: map, reduce, scan, hist, ...

Example

def dotprod x y = reduce (+) 0 (map (*) x y)

Futhark

Both things (i.e., Thing #1 and Thing #2) were implemented as
extensions to the Futhark programming language.
Futhark is...
▶ Statically typed (with parametric polymorphism):

id : α→ α = λx. x

▶ A data-parallel functional array language.
▶ Uses a library of parallel operators to build parallel-by-construction

programs: map, reduce, scan, hist, ...

Example

def dotprod x y = reduce (+) 0 (map (*) x y)

Thing #1:
Parallel Automatic Differentiation

Robert Schenck, Ola Rønning, Troels Henriksen, Cosmin E. Oancea

Overview

Automatic differentiation (AD) is a program transformation for
differentiation.

f (x) f ′(x)AD

Considering AD for a functional, high-level, and nested-parallel
array language.
All parallelism is made explicit via parallel combinators—map,
reduce, scan, etc.

Overview

Automatic differentiation (AD) is a program transformation for
differentiation.

f (x) f ′(x)AD

Considering AD for a functional, high-level, and nested-parallel
array language.

All parallelism is made explicit via parallel combinators—map,
reduce, scan, etc.

Overview

Automatic differentiation (AD) is a program transformation for
differentiation.

f (x) f ′(x)AD

Considering AD for a functional, high-level, and nested-parallel
array language.
All parallelism is made explicit via parallel combinators—map,
reduce, scan, etc.

High-level AD

Key idea #1: High-level AD

Parallel constructs are differentiated at a high-level.

Parallel combinators are differentiated with specialized rewrite
rules.

map ==⇒
AD

reduce ◦ map, reduce ==⇒
AD

map ◦ scan

Differentiated programs benefit from entire optimization pipeline in
the compiler.
Differentiation occurs before parallelism is mapped to hardware.

High-level AD

Key idea #1: High-level AD

Parallel constructs are differentiated at a high-level.

Parallel combinators are differentiated with specialized rewrite
rules.

map ==⇒
AD

reduce ◦ map, reduce ==⇒
AD

map ◦ scan

Differentiated programs benefit from entire optimization pipeline in
the compiler.
Differentiation occurs before parallelism is mapped to hardware.

High-level AD

Key idea #1: High-level AD

Parallel constructs are differentiated at a high-level.

Parallel combinators are differentiated with specialized rewrite
rules.

map ==⇒
AD

reduce ◦ map, reduce ==⇒
AD

map ◦ scan

Differentiated programs benefit from entire optimization pipeline in
the compiler.

Differentiation occurs before parallelism is mapped to hardware.

High-level AD

Key idea #1: High-level AD

Parallel constructs are differentiated at a high-level.

Parallel combinators are differentiated with specialized rewrite
rules.

map ==⇒
AD

reduce ◦ map, reduce ==⇒
AD

map ◦ scan

Differentiated programs benefit from entire optimization pipeline in
the compiler.
Differentiation occurs before parallelism is mapped to hardware.

The Tape

Variables of the original program appear in the differentiated
program.

All intermediate variables in the original program must be accessible
in the differentiated program.
In classic AD, these variables are stored on a dynamically allocated
tape.

f (x)

f ′(x)

AD
t1 = · · ·
t2 = sin(t1)

...

t1 = · · ·
t2 = sin(t1)

...
t1 = cos(t1) t2

...

t1
t2

tape

The Tape

Variables of the original program appear in the differentiated
program.
All intermediate variables in the original program must be accessible
in the differentiated program.

In classic AD, these variables are stored on a dynamically allocated
tape.

f (x)

f ′(x)

AD
t1 = · · ·
t2 = sin(t1)

...

t1 = · · ·
t2 = sin(t1)

...
t1 = cos(t1) t2

...

t1
t2

tape

The Tape

Variables of the original program appear in the differentiated
program.
All intermediate variables in the original program must be accessible
in the differentiated program.
In classic AD, these variables are stored on a dynamically allocated
tape.

f (x)

f ′(x)

AD
t1 = · · ·
t2 = sin(t1)

...

t1 = · · ·
t2 = sin(t1)

...
t1 = cos(t1) t2

...

t1
t2

tape

AD by Re-execution

In our nested-parallel context, the tape is complex/irregular and
must be passed across deeply nested scopes. Challenging to
implement efficiently.

Key idea #2: Re-execution

Instead of storing intermediate variables, re-compute them by
re-execution.

A classic space-time tradeoff.
Asymptotics-preserving: re-execution overhead is a constant for
non-recursive programs.
Pretty fast in practice!

AD by Re-execution

In our nested-parallel context, the tape is complex/irregular and
must be passed across deeply nested scopes. Challenging to
implement efficiently.

Key idea #2: Re-execution

Instead of storing intermediate variables, re-compute them by
re-execution.

A classic space-time tradeoff.

Asymptotics-preserving: re-execution overhead is a constant for
non-recursive programs.
Pretty fast in practice!

AD by Re-execution

In our nested-parallel context, the tape is complex/irregular and
must be passed across deeply nested scopes. Challenging to
implement efficiently.

Key idea #2: Re-execution

Instead of storing intermediate variables, re-compute them by
re-execution.

A classic space-time tradeoff.
Asymptotics-preserving: re-execution overhead is a constant for
non-recursive programs.

Pretty fast in practice!

AD by Re-execution

In our nested-parallel context, the tape is complex/irregular and
must be passed across deeply nested scopes. Challenging to
implement efficiently.

Key idea #2: Re-execution

Instead of storing intermediate variables, re-compute them by
re-execution.

A classic space-time tradeoff.
Asymptotics-preserving: re-execution overhead is a constant for
non-recursive programs.
Pretty fast in practice!

Related Parallel AD Work

PyTorch, JAX, etc: Restricted parallel DSLs; AD on fixed set of array
primitives.

Enzyme: LLVM compiler plugin that does AD on a post-optimization,
low-level representation.

Dex: High-level AD that uses multiple tapes; hard to implement
efficiently.

PyTorch, JAX, etc. Enzyme Dex ?
High-level ✓ ✗ ✓ ✓

Principled ✗ ✗ ✓ ✓

Fast ? ✓ ? ✓

Related Parallel AD Work

PyTorch, JAX, etc: Restricted parallel DSLs; AD on fixed set of array
primitives.

Enzyme: LLVM compiler plugin that does AD on a post-optimization,
low-level representation.

Dex: High-level AD that uses multiple tapes; hard to implement
efficiently.

PyTorch, JAX, etc. Enzyme Dex ?
High-level ✓ ✗ ✓ ✓

Principled ✗ ✗ ✓ ✓

Fast ? ✓ ? ✓

Related Parallel AD Work

PyTorch, JAX, etc: Restricted parallel DSLs; AD on fixed set of array
primitives.

Enzyme: LLVM compiler plugin that does AD on a post-optimization,
low-level representation.

Dex: High-level AD that uses multiple tapes; hard to implement
efficiently.

PyTorch, JAX, etc. Enzyme Dex ?
High-level ✓ ✗ ✓ ✓

Principled ✗ ✗ ✓ ✓

Fast ? ✓ ? ✓

Related Parallel AD Work

PyTorch, JAX, etc: Restricted parallel DSLs; AD on fixed set of array
primitives.

Enzyme: LLVM compiler plugin that does AD on a post-optimization,
low-level representation.

Dex: High-level AD that uses multiple tapes; hard to implement
efficiently.

PyTorch, JAX, etc. Enzyme Dex ?
High-level ✓ ✗ ✓ ✓

Principled ✗ ✗ ✓ ✓

Fast ? ✓ ? ✓

A Very Short Introduction to AD

Introduction to AD

P(x0, x1) : P′(x0, x1, y) :
t0 = sin(x0)
t1 = x1 · t0 =⇒ ?
y = x0 + t1
return y

Goal: compute the sensitivity of
the output y to its inputs x0, x1.

Adjoint of a variable

v ≡ ∂y
∂v

The sensitivity of the output y to v.

Adjoints appear in reverse
program-order.

Introduction to AD

P(x0, x1) : P′(x0, x1, y) :
t0 = sin(x0)
t1 = x1 · t0 =⇒ ?
y = x0 + t1
return y

Goal: compute the sensitivity of
the output y to its inputs x0, x1.

Adjoint of a variable

v ≡ ∂y
∂v

The sensitivity of the output y to v.

Adjoints appear in reverse
program-order.

Introduction to AD

P(x0, x1) : P′(x0, x1, y) :
t0 = sin(x0)
t1 = x1 · t0 =⇒ ?
y = x0 + t1
return y

return x0, x1

Goal: compute x0 and x1

Adjoint of a variable

v ≡ ∂y
∂v

The sensitivity of the output y to v.

Adjoints appear in reverse
program-order.

Introduction to AD

P(x0, x1) : P′(x0, x1, y) :
t0 = sin(x0) t0 = sin(x0)
t1 = x1 · t0 =⇒ t1 = x1 · t0
y = x0 + t1 y = x0 + t1
return y

return x0, x1

Goal: compute x0 and x1

Adjoint of a variable

v ≡ ∂y
∂v

The sensitivity of the output y to v.

Adjoints depend on primal
values. Add the statements of
the original program.

Adjoints appear in reverse
program-order.

Introduction to AD

P(x0, x1) : P′(x0, x1, y) :
t0 = sin(x0) t0 = sin(x0)
t1 = x1 · t0 =⇒ t1 = x1 · t0
y = x0 + t1 y = x0 + t1
return y

return x0, x1

Goal: compute x0 and x1

Adjoint of a variable

v ≡ ∂y
∂v

The sensitivity of the output y to v.

Adjoints depend on primal
values. Add the statements of
the original program.
Compute x1 by the chain rule:

x1 ≡
∂y
∂x1

=
∂y
∂t1

∂t1

∂x1
= t1

∂t1

∂x1

Adjoints appear in reverse
program-order.

Introduction to AD

P(x0, x1) : P′(x0, x1, y) :
t0 = sin(x0) t0 = sin(x0)
t1 = x1 · t0 =⇒ t1 = x1 · t0
y = x0 + t1 y = x0 + t1
return y

t1 = y
x1 = t0 · t1

return x0, x1

Goal: compute x0 and x1

Adjoint of a variable

v ≡ ∂y
∂v

The sensitivity of the output y to v.

Adjoints depend on primal
values. Add the statements of
the original program.
Compute x1 by the chain rule:

x1 ≡
∂y
∂x1

=
∂y
∂t1

∂t1

∂x1
= t1

∂t1

∂x1

Adjoints appear in reverse
program-order.

Introduction to AD

P(x0, x1) : P′(x0, x1, y) :
t0 = sin(x0) t0 = sin(x0)
t1 = x1 · t0 =⇒ t1 = x1 · t0
y = x0 + t1 y = x0 + t1
return y x0 = y

t1 = y
x1 = t0 · t1
t0 = x1 · t1
x0 += cos(x0) · t0
return x0, x1

Goal: compute x0 and x1

Adjoint of a variable

v ≡ ∂y
∂v

The sensitivity of the output y to v.

Adjoints depend on primal
values. Add the statements of
the original program.
Compute x1 by the chain rule.
Do the same for x0.

Adjoints appear in reverse
program-order.

Introduction to AD

P(x0, x1) : P′(x0, x1, y) :
t0 = sin(x0) t0 = sin(x0)
t1 = x1 · t0 =⇒ t1 = x1 · t0
y = x0 + t1 y = x0 + t1
return y x0 = y

t1 = y
x1 = t0 · t1
t0 = x1 · t1
x0 += cos(x0) · t0
return x0, x1

Goal: compute x0 and x1

Adjoint of a variable

v ≡ ∂y
∂v

The sensitivity of the output y to v.

Adjoints depend on primal
values. Add the statements of
the original program.
Compute x1 by the chain rule.
Do the same for x0.
Since x0 is read twice, its
adjoint gets two contributions.

Adjoints appear in reverse
program-order.

Introduction to AD

P(x0, x1) : P′(x0, x1, y) :
t0 = sin(x0) t0 = sin(x0)
t1 = x1 · t0 =⇒ t1 = x1 · t0
y = x0 + t1 y = x0 + t1
return y x0 = y

t1 = y
x1 = t0 · t1
t0 = x1 · t1
x0 += cos(x0) · t0
return x0, x1

Goal: compute x0 and x1

Adjoint of a variable

v ≡ ∂y
∂v

The sensitivity of the output y to v.

Adjoints depend on primal
values. Add the statements of
the original program.
Compute x1 by the chain rule.
Do the same for x0.
Since x0 is read twice, its
adjoint gets two contributions.
Adjoints appear in reverse
program-order.

Introduction to AD

P(x0, x1) : P′(x0, x1, y) :
t0 = sin(x0) t0 = sin(x0)
t1 = x1 · t0 =⇒ t1 = x1 · t0
y = x0 + t1 y = x0 + t1
return y x0 = y

t1 = y
x1 = t0 · t1
t0 = x1 · t1
x0 += cos(x0) · t0
return x0, x1

Can express AD as a rewrite
rule:

AD rewrite rule

v = f (u,w) =⇒

v = f (u,w)

...

u +=
∂f (u,w)

∂u
v

w +=
∂f (u,w)

∂w
v

AD Transformation

AD Transformation

Programs are built from bodies; i.e., a list of statements concluding
in a result.

let x = a + b
let res = x * c
in res

=⇒

stm— stms
body

To differentiate:

1.

2.
3.

AD Transformation

Programs are built from bodies; i.e., a list of statements concluding
in a result.

let x = a + b let x = a + b
let res = x * c let res = x * c
in res =⇒

stm— stms
body

−−−→stms

To differentiate:
1. Execute the statements of the original body; −−−→stms is the forward
sweep.

2.
3.

AD Transformation

Programs are built from bodies; i.e., a list of statements concluding
in a result.

let x = a + b let x = a + b
let res = x * c let res = x * c
in res =⇒ let x = c * res

let c += x* res
let a += x
let b += x

stm— stms
body

−−−→stms

←−−−stms

←−→stms

To differentiate:
1. Execute the statements of the original body; −−−→stms is the forward
sweep.

2. Compute the adjoint contributions;←−−−stms is the reverse sweep.

3.

AD Transformation

Programs are built from bodies; i.e., a list of statements concluding
in a result.

let x = a + b let x = a + b
let res = x * c let res = x * c
in res =⇒ let x = c * res

let c += x* res
let a += x
let b += x
in (a, b, c)

stm— stms
body

−−−→stms

←−−−stms

←−→stms

fvsbody

To differentiate:
1. Execute the statements of the original body; −−−→stms is the forward
sweep.

2. Compute the adjoint contributions;←−−−stms is the reverse sweep.
3. Return the adjoints of free variables.

AD by Re-execution

let zs = map (λa bs→
let z = reduce (λx y →
let t = sin(x) stms0
let red_res = t · y


stms1

in red_res) 0 bs stms2
letmap_res = z · a
inmap_res) as bss

in zs

AD by Re-execution
−−−−→stms0−−−−→stms1−−−−→stms2

stms0
←−−−−stms0

stms1 =⇒

−−−−→stms1

stms2

−−−−→stms2←−−−−stms1−−−−→stms2←−−−−stms2

The amount of re-execution is proportional to the depth of the
deepest scope.

AD by Re-execution
−−−−→stms0−−−−→stms1−−−−→stms2

stms0
←−−−−stms0

stms1 =⇒ −−−−→stms1

stms2
−−−−→stms2←−−−−stms1

−−−−→stms2←−−−−stms2

The amount of re-execution is proportional to the depth of the
deepest scope.

AD by Re-execution
−−−−→stms0−−−−→stms1−−−−→stms2

stms0
←−−−−stms0

stms1 =⇒ −−−−→stms1

stms2
−−−−→stms2←−−−−stms1−−−−→stms2←−−−−stms2

The amount of re-execution is proportional to the depth of the
deepest scope.

Re-execution in Perfect Scope Nests

stms0
−−−−→stms0

−−−→
map f

stms1
−−−−→stms1

−−−−→
map g

stms2
−−−−→stms2

−−−−→stms2

General case
←−−−−stms0

←−−−
map f

=⇒ −−−−→stms1
←−−−−
map g

map f −−−−→stms2
−−−−→stms2

map g ←−−−−stms1
←−−−−stms2

stms2
−−−−→stms2

Perfect nest
←−−−−stms2

General case Perfect nest

In perfect scope nests, only the outermost and innermost scopes
are re-executed.

Differentiating Parallel Constructs

reduce

reduce combines all elements of an array with a binary associative
operator ⊙:

let y = reduce ⊙ e⊙ [a0,a1, . . . ,an−1]

≡
let y = a0 ⊙ a1 ⊙ · · · ⊙ an−1

For each ai in the array, we can group the terms of the reduce as

a0 ⊙ · · · ⊙ ai−1︸ ︷︷ ︸
li

⊙ ai ⊙ ai+1 ⊙ · · · ⊙ an−1︸ ︷︷ ︸
ri

And then directly apply the AD rewrite rule

ai +=
∂(li ⊙ ai ⊙ ri)

∂ai
y

reduce

reduce combines all elements of an array with a binary associative
operator ⊙:

let y = reduce ⊙ e⊙ [a0,a1, . . . ,an−1]

≡
let y = a0 ⊙ a1 ⊙ · · · ⊙ an−1

For each ai in the array, we can group the terms of the reduce as

a0 ⊙ · · · ⊙ ai−1︸ ︷︷ ︸
li

⊙ ai ⊙ ai+1 ⊙ · · · ⊙ an−1︸ ︷︷ ︸
ri

And then directly apply the AD rewrite rule

ai +=
∂(li ⊙ ai ⊙ ri)

∂ai
y

reduce

reduce combines all elements of an array with a binary associative
operator ⊙:

let y = reduce ⊙ e⊙ [a0,a1, . . . ,an−1]

≡
let y = a0 ⊙ a1 ⊙ · · · ⊙ an−1

For each ai in the array, we can group the terms of the reduce as

a0 ⊙ · · · ⊙ ai−1︸ ︷︷ ︸
li

⊙ ai ⊙ ai+1 ⊙ · · · ⊙ an−1︸ ︷︷ ︸
ri

And then directly apply the AD rewrite rule

ai +=
∂(li ⊙ ai ⊙ ri)

∂ai
y

Computing li and ri

For each i ∈ {0, . . . ,n− 1}, need to compute li and ri
a0 ⊙ · · · ⊙ ai−1︸ ︷︷ ︸

li

⊙ ai ⊙ ai+1 ⊙ · · · ⊙ an−1︸ ︷︷ ︸
ri

For the lis, do a parallel scan

let ls = scan⊙e⊙ [a0,a1, . . . ,an−1] ≡ [e⊙︸︷︷︸
l0

, a0︸︷︷︸
l1

, a0 ⊙ a1︸ ︷︷ ︸
l2

, . . . , a0 ⊙ . . .⊙ an−2︸ ︷︷ ︸
ln−1

]

For the rs, the array must be reversed

let rs = reverse as ▷ scan (λx y → y ⊙ x) e⊙ [a0,a1, . . . ,an−1] ▷ reverse

≡ [a0 ⊙ . . .⊙ an−2︸ ︷︷ ︸
r0

, . . . ,an−2 ⊙ an−1︸ ︷︷ ︸
rn−3

,an−1︸ ︷︷ ︸
rn−2

, e⊙︸︷︷︸
rn−1

]

Computing li and ri

For each i ∈ {0, . . . ,n− 1}, need to compute li and ri
a0 ⊙ · · · ⊙ ai−1︸ ︷︷ ︸

li

⊙ ai ⊙ ai+1 ⊙ · · · ⊙ an−1︸ ︷︷ ︸
ri

For the lis, do a parallel scan

let ls = scan⊙e⊙ [a0,a1, . . . ,an−1] ≡ [e⊙︸︷︷︸
l0

, a0︸︷︷︸
l1

, a0 ⊙ a1︸ ︷︷ ︸
l2

, . . . , a0 ⊙ . . .⊙ an−2︸ ︷︷ ︸
ln−1

]

For the rs, the array must be reversed

let rs = reverse as ▷ scan (λx y → y ⊙ x) e⊙ [a0,a1, . . . ,an−1] ▷ reverse

≡ [a0 ⊙ . . .⊙ an−2︸ ︷︷ ︸
r0

, . . . ,an−2 ⊙ an−1︸ ︷︷ ︸
rn−3

,an−1︸ ︷︷ ︸
rn−2

, e⊙︸︷︷︸
rn−1

]

Computing li and ri

For each i ∈ {0, . . . ,n− 1}, need to compute li and ri
a0 ⊙ · · · ⊙ ai−1︸ ︷︷ ︸

li

⊙ ai ⊙ ai+1 ⊙ · · · ⊙ an−1︸ ︷︷ ︸
ri

For the lis, do a parallel scan

let ls = scan⊙e⊙ [a0,a1, . . . ,an−1] ≡ [e⊙︸︷︷︸
l0

, a0︸︷︷︸
l1

, a0 ⊙ a1︸ ︷︷ ︸
l2

, . . . , a0 ⊙ . . .⊙ an−2︸ ︷︷ ︸
ln−1

]

For the rs, the array must be reversed

let rs = reverse as ▷ scan (λx y → y ⊙ x) e⊙ [a0,a1, . . . ,an−1] ▷ reverse

≡ [a0 ⊙ . . .⊙ an−2︸ ︷︷ ︸
r0

, . . . ,an−2 ⊙ an−1︸ ︷︷ ︸
rn−3

,an−1︸ ︷︷ ︸
rn−2

, e⊙︸︷︷︸
rn−1

]

reduce

The differentiation of reduce results in the following statements:

let y = reduce ⊙ e⊙ [a0,a1, . . . ,an−1]
}

Forward sweep
...

let ls = scan ⊙ e⊙ as
let rs = reverse as ▷ scan (λx y → y ⊙ x) e⊙ ▷ reverse

Reverse sweep

let as += map
(
λli ai ri →

∂(li⊙ai⊙ri)
∂ai

y
)
ls as rs

The rule is asymptotics-preserving: scan has the same asymptotics
as reduce.
Specialized rules for other operators (+, min, max, ·) admit even
more efficient implementations.

reduce

The differentiation of reduce results in the following statements:

let y = reduce ⊙ e⊙ [a0,a1, . . . ,an−1]
}

Forward sweep
...

let ls = scan ⊙ e⊙ as
let rs = reverse as ▷ scan (λx y → y ⊙ x) e⊙ ▷ reverse

Reverse sweep

let as += map
(
λli ai ri →

∂(li⊙ai⊙ri)
∂ai

y
)
ls as rs

The rule is asymptotics-preserving: scan has the same asymptotics
as reduce.

Specialized rules for other operators (+, min, max, ·) admit even
more efficient implementations.

reduce

The differentiation of reduce results in the following statements:

let y = reduce ⊙ e⊙ [a0,a1, . . . ,an−1]
}

Forward sweep
...

let ls = scan ⊙ e⊙ as
let rs = reverse as ▷ scan (λx y → y ⊙ x) e⊙ ▷ reverse

Reverse sweep

let as += map
(
λli ai ri →

∂(li⊙ai⊙ri)
∂ai

y
)
ls as rs

The rule is asymptotics-preserving: scan has the same asymptotics
as reduce.
Specialized rules for other operators (+, min, max, ·) admit even
more efficient implementations.

map

Consider the following map :

let xs = map (λa b→ let res = a · b in res) as bs

Differentiating map is straightforward: just differentiate the lambda
and pass in the necessary adjoints as well:

let as,bs = map (λa b x a0 b0 →
let res = a · b
let a = b · x + a0

let b = a · x + b0

in a,b) as bs xs as0 bs0

map

Consider the following map :

let xs = map (λa b→ let res = a · b in res) as bs

Differentiating map is straightforward: just differentiate the lambda
and pass in the necessary adjoints as well:

let as,bs = map (λa b x a0 b0 →
let res = a · b
let a = b · x + a0

let b = a · x + b0

in a,b) as bs xs as0 bs0

map with Free Variables

maps involving free variables are more complicated to differentiate

let xs = map (λa→ a · b) as

Naive approach: turn free variables into bound variables.

let xs = map (λa b′ → a · b′) as (replicate n b)

Problem: asymptotically inefficient for partially used free arrays.

map (λ(i, as′)→ as′[i]) is (replicate n as),

map with Free Variables

maps involving free variables are more complicated to differentiate

let xs = map (λa→ a · b) as

Naive approach: turn free variables into bound variables.

let xs = map (λa b′ → a · b′) as (replicate n b)

Problem: asymptotically inefficient for partially used free arrays.

map (λ(i, as′)→ as′[i]) is (replicate n as),

map with Free Variables

maps involving free variables are more complicated to differentiate

let xs = map (λa→ a · b) as

Naive approach: turn free variables into bound variables.

let xs = map (λa b′ → a · b′) as (replicate n b)

Problem: asymptotically inefficient for partially used free arrays.

map (λ(i, as′)→ as′[i]) is (replicate n as),

Efficient maps with Free Variables

In an impure language, asymptotics-preserving adjoint updates for
free array variables can be implemented as a generalized reduction.

▶ The adjoint of a free array variable as[i] can be updated with an
operation as[i] += v.

In our pure setting, we introduce accumulators.
▶ Write-only view of an array.
▶ Preserves purely functional reasoning in the compiler.
▶ Preserves asymptotics by operationally doing in-place updates.

Efficient maps with Free Variables

In an impure language, asymptotics-preserving adjoint updates for
free array variables can be implemented as a generalized reduction.
▶ The adjoint of a free array variable as[i] can be updated with an

operation as[i] += v.

In our pure setting, we introduce accumulators.
▶ Write-only view of an array.
▶ Preserves purely functional reasoning in the compiler.
▶ Preserves asymptotics by operationally doing in-place updates.

Efficient maps with Free Variables

In an impure language, asymptotics-preserving adjoint updates for
free array variables can be implemented as a generalized reduction.
▶ The adjoint of a free array variable as[i] can be updated with an

operation as[i] += v.

In our pure setting, we introduce accumulators.
▶ Write-only view of an array.
▶ Preserves purely functional reasoning in the compiler.
▶ Preserves asymptotics by operationally doing in-place updates.

Loops

Loops

Loops in Futhark are sugar for tail-recursive functions.
Loop parameters are variables which are variant through the loop
and are returned as the result of the loop.

loop y = 2 for i = 0 . . .n - 1 do
let y′ = y ∗ y
in y′

y = 2
for i = 0 . . .n - 1 do
y = y ∗ y

(Imperative analog)

Since the adjoints of the loop body are computed in reverse order,
the loop parameter y needs to be saved for each iteration.

Loops

Loops in Futhark are sugar for tail-recursive functions.
Loop parameters are variables which are variant through the loop
and are returned as the result of the loop.

loop y = 2 for i = 0 . . .n - 1 do
let y′ = y ∗ y
in y′

y = 2
for i = 0 . . .n - 1 do
y = y ∗ y

(Imperative analog)

Since the adjoints of the loop body are computed in reverse order,
the loop parameter y needs to be saved for each iteration.

Differentiating Loops

let y′′ =
loop y = y0 for i = 0 . . .n - 1 do
stmsloop
in y′

1. Execute the original loop, save
the value of y in each iteration
in ys.

2. Compute the adjoint
contributions of the loop.

▶ Run the loop backwards
▶ Restore the value of y from ys
▶ Re-execute the body of the

original loop
▶ Compute the adjoints of the

body

2 let ys0 = scratch(n,
3 sizeOf(y0))
4 let (y′′, ys) =
5 loop (y, ys) = (y0, ys0)


Forward sweep

6 for i = 0 . . .n - 1 do
7 let ys[i] = y
8 stmsloop
9 in (y′, ys)
12 let (y′′′, fvsl) =
13 loop (y, fvsl) = (y′′, fvsl0)
14 for i = n - 1 . . .0 do
15 let y = ys[i]
16

−−−−−−→stmsloop


Reverse sweep

17
←−−−−−−stmsloop

18 in (y′, fvs′l)
19 let y0 += y′′′

Differentiating Loops

let y′′ =
loop y = y0 for i = 0 . . .n - 1 do
stmsloop
in y′

1. Execute the original loop, save
the value of y in each iteration
in ys.

2. Compute the adjoint
contributions of the loop.

▶ Run the loop backwards
▶ Restore the value of y from ys
▶ Re-execute the body of the

original loop
▶ Compute the adjoints of the

body

2 let ys0 = scratch(n,
3 sizeOf(y0))
4 let (y′′, ys) =
5 loop (y, ys) = (y0, ys0)


Forward sweep

6 for i = 0 . . .n - 1 do
7 let ys[i] = y
8 stmsloop
9 in (y′, ys)
12 let (y′′′, fvsl) =
13 loop (y, fvsl) = (y′′, fvsl0)
14 for i = n - 1 . . .0 do
15 let y = ys[i]
16

−−−−−−→stmsloop


Reverse sweep

17
←−−−−−−stmsloop

18 in (y′, fvs′l)
19 let y0 += y′′′

Differentiating Loops

let y′′ =
loop y = y0 for i = 0 . . .n - 1 do
stmsloop
in y′

1. Execute the original loop, save
the value of y in each iteration
in ys.

2. Compute the adjoint
contributions of the loop.
▶ Run the loop backwards

▶ Restore the value of y from ys
▶ Re-execute the body of the

original loop
▶ Compute the adjoints of the

body

2 let ys0 = scratch(n,
3 sizeOf(y0))
4 let (y′′, ys) =
5 loop (y, ys) = (y0, ys0)


Forward sweep

6 for i = 0 . . .n - 1 do
7 let ys[i] = y
8 stmsloop
9 in (y′, ys)
12 let (y′′′, fvsl) =
13 loop (y, fvsl) = (y′′, fvsl0)
14 for i = n - 1 . . .0 do
15 let y = ys[i]
16

−−−−−−→stmsloop


Reverse sweep

17
←−−−−−−stmsloop

18 in (y′, fvs′l)
19 let y0 += y′′′

Differentiating Loops

let y′′ =
loop y = y0 for i = 0 . . .n - 1 do
stmsloop
in y′

1. Execute the original loop, save
the value of y in each iteration
in ys.

2. Compute the adjoint
contributions of the loop.
▶ Run the loop backwards
▶ Restore the value of y from ys

▶ Re-execute the body of the
original loop

▶ Compute the adjoints of the
body

2 let ys0 = scratch(n,
3 sizeOf(y0))
4 let (y′′, ys) =
5 loop (y, ys) = (y0, ys0)


Forward sweep

6 for i = 0 . . .n - 1 do
7 let ys[i] = y
8 stmsloop
9 in (y′, ys)
12 let (y′′′, fvsl) =
13 loop (y, fvsl) = (y′′, fvsl0)
14 for i = n - 1 . . .0 do
15 let y = ys[i]
16

−−−−−−→stmsloop


Reverse sweep

17
←−−−−−−stmsloop

18 in (y′, fvs′l)
19 let y0 += y′′′

Differentiating Loops

let y′′ =
loop y = y0 for i = 0 . . .n - 1 do
stmsloop
in y′

1. Execute the original loop, save
the value of y in each iteration
in ys.

2. Compute the adjoint
contributions of the loop.
▶ Run the loop backwards
▶ Restore the value of y from ys
▶ Re-execute the body of the

original loop

▶ Compute the adjoints of the
body

2 let ys0 = scratch(n,
3 sizeOf(y0))
4 let (y′′, ys) =
5 loop (y, ys) = (y0, ys0)


Forward sweep

6 for i = 0 . . .n - 1 do
7 let ys[i] = y
8 stmsloop
9 in (y′, ys)
12 let (y′′′, fvsl) =
13 loop (y, fvsl) = (y′′, fvsl0)
14 for i = n - 1 . . .0 do
15 let y = ys[i]
16

−−−−−−→stmsloop


Reverse sweep

17
←−−−−−−stmsloop

18 in (y′, fvs′l)
19 let y0 += y′′′

Differentiating Loops

let y′′ =
loop y = y0 for i = 0 . . .n - 1 do
stmsloop
in y′

1. Execute the original loop, save
the value of y in each iteration
in ys.

2. Compute the adjoint
contributions of the loop.
▶ Run the loop backwards
▶ Restore the value of y from ys
▶ Re-execute the body of the

original loop
▶ Compute the adjoints of the

body

2 let ys0 = scratch(n,
3 sizeOf(y0))
4 let (y′′, ys) =
5 loop (y, ys) = (y0, ys0)


Forward sweep

6 for i = 0 . . .n - 1 do
7 let ys[i] = y
8 stmsloop
9 in (y′, ys)
12 let (y′′′, fvsl) =
13 loop (y, fvsl) = (y′′, fvsl0)
14 for i = n - 1 . . .0 do
15 let y = ys[i]
16

−−−−−−→stmsloop


Reverse sweep

17
←−−−−−−stmsloop

18 in (y′, fvs′l)
19 let y0 += y′′′

Loop Strip-mining

Loop strip-mining partitions a loop into a loop nest

loop y = y0 for i = 0 . . .n3 - 1 do loop yj = y0 for j = 0 . . .n - 1 do
stms =⇒ loop yk = yj for k = 0 . . .n - 1 do

loop ym = yk form = 0 . . .n - 1 do
let i = j ∗ n2/3 + k ∗ n1/3 +m
stms

For the original loop, we save n3 versions of y on the tape.
For the strip-mined loop, only 3n versions are saved. (With an
increased re-execution overhead factor of 3.)

Loop Strip-mining

Loop strip-mining partitions a loop into a loop nest

loop y = y0 for i = 0 . . .n3 - 1 do loop yj = y0 for j = 0 . . .n - 1 do
stms =⇒ loop yk = yj for k = 0 . . .n - 1 do

loop ym = yk form = 0 . . .n - 1 do
let i = j ∗ n2/3 + k ∗ n1/3 +m
stms

For the original loop, we save n3 versions of y on the tape.

For the strip-mined loop, only 3n versions are saved. (With an
increased re-execution overhead factor of 3.)

Loop Strip-mining

Loop strip-mining partitions a loop into a loop nest

loop y = y0 for i = 0 . . .n3 - 1 do loop yj = y0 for j = 0 . . .n - 1 do
stms =⇒ loop yk = yj for k = 0 . . .n - 1 do

loop ym = yk form = 0 . . .n - 1 do
let i = j ∗ n2/3 + k ∗ n1/3 +m
stms

For the original loop, we save n3 versions of y on the tape.
For the strip-mined loop, only 3n versions are saved. (With an
increased re-execution overhead factor of 3.)

Benchmarks

CPU Benchmarks - ADBench

BA

D-L
STM

GM
M

0

5

10

13

3.
2

5.
1

10
.3

4
.5 5.

4

8.
6

6.
2

4
.6

Futhark
Tapenade

Manual

HAND-C

HAND-S
0

20

40

60

50

4
5

3,
75

8

59

4
.6

4
.4

ADBench: a collection of AD
benchmarks for comparing
sequential AD tools.

Benchmarked Futhark using its C
backend.

Performance measured in AD
overhead:

differentiated runtime
original runtime

CPU Benchmarks - ADBench

BA

D-L
STM

GM
M

0

5

10

13

3.
2

5.
1

10
.3

4
.5 5.

4

8.
6

6.
2

4
.6

Futhark
Tapenade

Manual

HAND-C

HAND-S
0

20

40

60

50

4
5

3,
75

8

59

4
.6

4
.4

ADBench: a collection of AD
benchmarks for comparing
sequential AD tools.

Benchmarked Futhark using its C
backend.

Performance measured in AD
overhead:

differentiated runtime
original runtime

CPU Benchmarks - ADBench

BA

D-L
STM

GM
M

0

5

10

13

3.
2

5.
1

10
.3

4
.5 5.

4

8.
6

6.
2

4
.6

Futhark
Tapenade

Manual

HAND-C

HAND-S
0

20

40

60

50

4
5

3,
75

8

59

4
.6

4
.4

ADBench: a collection of AD
benchmarks for comparing
sequential AD tools.

Benchmarked Futhark using its C
backend.

Performance measured in AD
overhead:

differentiated runtime
original runtime

GPU Benchmarks - vs. Enzyme

RSBench

XSBench
LBM

0

2

4

6
3.

9

2.
7

5.
1

4
.2

3.
2

6.
3

Futhark
Enzyme

Performance measured in AD
overhead:

differentiated runtime
original runtime

Enzyme is LLVM compiler plugin that
performs AD on a low-level imperative
IR.

RSBench and XSBench are comprised
of a large parallell loop with inner
sequential loops and branches.

LBM consists of a large sequential
loop containing a parallel loop.

GPU Benchmarks - vs. Enzyme

RSBench

XSBench
LBM

0

2

4

6
3.

9

2.
7

5.
1

4
.2

3.
2

6.
3

Futhark
Enzyme

Performance measured in AD
overhead:

differentiated runtime
original runtime

Enzyme is LLVM compiler plugin that
performs AD on a low-level imperative
IR.

RSBench and XSBench are comprised
of a large parallell loop with inner
sequential loops and branches.

LBM consists of a large sequential
loop containing a parallel loop.

GPU Benchmarks - vs. Enzyme

RSBench

XSBench
LBM

0

2

4

6
3.

9

2.
7

5.
1

4
.2

3.
2

6.
3

Futhark
Enzyme

Performance measured in AD
overhead:

differentiated runtime
original runtime

Enzyme is LLVM compiler plugin that
performs AD on a low-level imperative
IR.

RSBench and XSBench are comprised
of a large parallell loop with inner
sequential loops and branches.

LBM consists of a large sequential
loop containing a parallel loop.

GPU Benchmarks - k-means

Dataset 0
0

20

40

41
13

41
16

28

Fut-AD
Fut-Manual

PyTorch
JAX

JAX-VMap

Dataset 1
0

5

10

15

20

11
19

9
2

10
8

Dataset 2
0

500

1,000

10
9

94
92

2
20

7
97

6

Performance measured in
miliseconds.

k-means clustering using
AD-based Newton’s
method to find cluster
centers.

PyTorch and JAX use
hand-tuned matrix
primitives; JAX(vmap)
instead uses JAX’s
vectorizing map operation
for these operations, in
analog with Futhark.

GPU Benchmarks - k-means

Dataset 0
0

20

40

41
13

41
16

28

Fut-AD
Fut-Manual

PyTorch
JAX

JAX-VMap

Dataset 1
0

5

10

15

20

11
19

9
2

10
8

Dataset 2
0

500

1,000

10
9

94
92

2
20

7
97

6

Performance measured in
miliseconds.

k-means clustering using
AD-based Newton’s
method to find cluster
centers.

PyTorch and JAX use
hand-tuned matrix
primitives; JAX(vmap)
instead uses JAX’s
vectorizing map operation
for these operations, in
analog with Futhark.

GPU Benchmarks - Sparse k-means

movielens
0

0.5

1

1.5

0
.16

6
·1

0
−

2

1.4
7

0
.3

8

Fut-AD
Fut-Manual

PyTorch
JAX

nytimes
0

2

4
0
.3

9
·1

0
−

2

5.
24

1.3
5

scrna
0

2

4

6

8

10

0
.5

8
0
.16

9.
32

8.
91

Performance measured in
seconds.

PyTorch and JAX use
hand-tuned matrix
primitives and sparse
libraries.

Futhark just uses a
standard CSR
implementation.

GPU Benchmarks - Depth and Memory Consumption

RSBench

XSBench
LBM

GM
M

LSTM
0

0.5

1

1.5

2

2.5

1.4

1

33
.6

2.
1

2.
1

RSBench

XSBench
LBM

GM
M

LSTM
0

2

4

6

6 6

5

4 4

Depth
Mem. Overhead

AD Memory overhead:

differentiated mem. consumption
original mem. consumption

With loop strip-mining, LBM’s
memory overhead is reduced to
8.7, with only a 1.3× increase in
runtime.

Strong performance on programs
with non-trivial depth
demonstrates the viability of a
recomputation-based approach to
AD.

Conclusions

Conclusions

AD in a nested-parallel, high-level and hardware-neutral functional
language.

Key idea: high-level differentiation using specialized rules for parallel
combinators.

Key idea: re-computation instead of a tape (except for loops!).

Strong performance against state-of-the-art AD competitors.

The implementation is now mature and available in the Futhark
compiler.

Conclusions

AD in a nested-parallel, high-level and hardware-neutral functional
language.

Key idea: high-level differentiation using specialized rules for parallel
combinators.

Key idea: re-computation instead of a tape (except for loops!).

Strong performance against state-of-the-art AD competitors.

The implementation is now mature and available in the Futhark
compiler.

Conclusions

AD in a nested-parallel, high-level and hardware-neutral functional
language.

Key idea: high-level differentiation using specialized rules for parallel
combinators.

Key idea: re-computation instead of a tape (except for loops!).

Strong performance against state-of-the-art AD competitors.

The implementation is now mature and available in the Futhark
compiler.

Conclusions

AD in a nested-parallel, high-level and hardware-neutral functional
language.

Key idea: high-level differentiation using specialized rules for parallel
combinators.

Key idea: re-computation instead of a tape (except for loops!).

Strong performance against state-of-the-art AD competitors.

The implementation is now mature and available in the Futhark
compiler.

Conclusions

AD in a nested-parallel, high-level and hardware-neutral functional
language.

Key idea: high-level differentiation using specialized rules for parallel
combinators.

Key idea: re-computation instead of a tape (except for loops!).

Strong performance against state-of-the-art AD competitors.

The implementation is now mature and available in the Futhark
compiler.

Thing #2: AUTOMAP

Robert Schenck, Nikolaj Hey Hinnerskov, Troels Henriksen,
Magnus Madsen, Martin Elsman

Rank polymorphism

1 + 2 => 3

[1,2,3] + [4,5,6] => [5,7,9]

[1,2,3] + 4 => [5,6,7]

sqrt [[1,4,9], [16,25,36]] => [[1,2,3], [4,5,6]]

Rank polymorphism

1 + 2 => 3

[1,2,3] + [4,5,6] => [5,7,9]

[1,2,3] + 4 => [5,6,7]

sqrt [[1,4,9], [16,25,36]] => [[1,2,3], [4,5,6]]

Rank polymorphism

1 + 2 => 3

[1,2,3] + [4,5,6] => [5,7,9]

[1,2,3] + 4 => [5,6,7]

sqrt [[1,4,9], [16,25,36]] => [[1,2,3], [4,5,6]]

Rank polymorphism

1 + 2 => 3

[1,2,3] + [4,5,6] => [5,7,9]

[1,2,3] + 4 => [5,6,7]

sqrt [[1,4,9], [16,25,36]] => [[1,2,3], [4,5,6]]

Rank polymorphism

Rank polymorphism

The ability to apply functions to arguments with different ranks than the
function expects.

Makes code easier to read, more enjoyable to write, and closer to
math:

map (+) [1,2,3] [4,5,6] vs. [1,2,3] + [4,5,6]

This work: how do we get rank polymorphic applications in a
statically-typed language with parametric polymorphism?

Rank polymorphism

Rank polymorphism

The ability to apply functions to arguments with different ranks than the
function expects.

Makes code easier to read, more enjoyable to write, and closer to
math:

map (+) [1,2,3] [4,5,6] vs. [1,2,3] + [4,5,6]

This work: how do we get rank polymorphic applications in a
statically-typed language with parametric polymorphism?

Rank polymorphism

Rank polymorphism

The ability to apply functions to arguments with different ranks than the
function expects.

Makes code easier to read, more enjoyable to write, and closer to
math:

map (+) [1,2,3] [4,5,6] vs. [1,2,3] + [4,5,6]

This work: how do we get rank polymorphic applications in a
statically-typed language with parametric polymorphism?

map and rep

map f xs applies f to each element of xs:

map f [x_0, x_1, ..., x_n] = [f x_0, f x_1, ..., f x_n]

You can map functions that take multiple arguments too:

map (+) [x_0, ..., x_n] [y_0, ..., y_n]
= [x_0 + y_0, ..., x_n + y_n]

rep x makes an array of unspecified length whose elements are all x:

rep x = [x, x, ..., x]

▶ We’ll ignore the question of how many elements are needed.

map and rep

map f xs applies f to each element of xs:

map f [x_0, x_1, ..., x_n] = [f x_0, f x_1, ..., f x_n]

You can map functions that take multiple arguments too:

map (+) [x_0, ..., x_n] [y_0, ..., y_n]
= [x_0 + y_0, ..., x_n + y_n]

rep x makes an array of unspecified length whose elements are all x:

rep x = [x, x, ..., x]

▶ We’ll ignore the question of how many elements are needed.

map and rep

map f xs applies f to each element of xs:

map f [x_0, x_1, ..., x_n] = [f x_0, f x_1, ..., f x_n]

You can map functions that take multiple arguments too:

map (+) [x_0, ..., x_n] [y_0, ..., y_n]
= [x_0 + y_0, ..., x_n + y_n]

rep x makes an array of unspecified length whose elements are all x:

rep x = [x, x, ..., x]

▶ We’ll ignore the question of how many elements are needed.

An example

[[1,2],[3,4]] + 1

elaborates to

[[1,2],[3,4]] + rep (rep 1)

which further elaborates to

map (map (+)) [[1,2],[3,4]]
(rep (rep 1))

xss : [][]int
yss : [][]int
f: []int → [][]int → int

f xss yss

First, we map f across both matrices:

map f xss yss

Because of the map, yss must be
replicated:
map f xss (rep yss)

reps can often be eliminated

map (λxs → f xs yss) xss

An example

[[1,2],[3,4]] + 1

elaborates to

[[1,2],[3,4]] + rep (rep 1)

which further elaborates to

map (map (+)) [[1,2],[3,4]]
(rep (rep 1))

xss : [][]int
yss : [][]int
f: []int → [][]int → int

f xss yss

First, we map f across both matrices:

map f xss yss

Because of the map, yss must be
replicated:
map f xss (rep yss)

reps can often be eliminated

map (λxs → f xs yss) xss

An example

[[1,2],[3,4]] + 1

elaborates to

[[1,2],[3,4]] + rep (rep 1)

which further elaborates to

map (map (+)) [[1,2],[3,4]]
(rep (rep 1))

xss : [][]int
yss : [][]int
f: []int → [][]int → int

f xss yss

First, we map f across both matrices:

map f xss yss

Because of the map, yss must be
replicated:
map f xss (rep yss)

reps can often be eliminated

map (λxs → f xs yss) xss

An example

[[1,2],[3,4]] + 1

elaborates to

[[1,2],[3,4]] + rep (rep 1)

which further elaborates to

map (map (+)) [[1,2],[3,4]]
(rep (rep 1))

xss : [][]int
yss : [][]int
f: []int → [][]int → int

f xss yss

First, we map f across both matrices:

map f xss yss

Because of the map, yss must be
replicated:
map f xss (rep yss)

reps can often be eliminated

map (λxs → f xs yss) xss

An example

[[1,2],[3,4]] + 1

elaborates to

[[1,2],[3,4]] + rep (rep 1)

which further elaborates to

map (map (+)) [[1,2],[3,4]]
(rep (rep 1))

xss : [][]int
yss : [][]int
f: []int → [][]int → int

f xss yss

First, we map f across both matrices:

map f xss yss

Because of the map, yss must be
replicated:
map f xss (rep yss)

reps can often be eliminated

map (λxs → f xs yss) xss

An example

[[1,2],[3,4]] + 1

elaborates to

[[1,2],[3,4]] + rep (rep 1)

which further elaborates to

map (map (+)) [[1,2],[3,4]]
(rep (rep 1))

xss : [][]int
yss : [][]int
f: []int → [][]int → int

f xss yss

First, we map f across both matrices:

map f xss yss

Because of the map, yss must be
replicated:
map f xss (rep yss)

reps can often be eliminated

map (λxs → f xs yss) xss

An example

[[1,2],[3,4]] + 1

elaborates to

[[1,2],[3,4]] + rep (rep 1)

which further elaborates to

map (map (+)) [[1,2],[3,4]]
(rep (rep 1))

xss : [][]int
yss : [][]int
f: []int → [][]int → int

f xss yss

First, we map f across both matrices:

map f xss yss

Because of the map, yss must be
replicated:
map f xss (rep yss)

reps can often be eliminated

map (λxs → f xs yss) xss

Goal
For each function application, the compiler should automatically insert
maps or reps to make the application rank-correct.

f x =⇒ map (... (map f) ...) (rep ... (rep x) ...)

Goal
For each function application, the compiler should automatically insert
maps or reps to make the application rank-correct.

f x =⇒ map (... (map f) ...) (rep ... (rep x) ...)

Challenge: ambiguity

sum : []int → int
length : []a → int
xss : [][]int

sum (length xss)

Many rank-correct elaborations:
1. sum (rep (length xss))

2. sum (map length xss)

3. map sum (map (map length) (rep xss))

4. ...

Challenge: ambiguity

sum : []int → int
length : []a → int
xss : [][]int

sum (length xss)

Many rank-correct elaborations:
1. sum (rep (length xss))

2. sum (map length xss)

3. map sum (map (map length) (rep xss))

4. ...

Challenge: ambiguity

sum : []int → int
length : []a → int
xss : [][]int

sum (length xss)

Many rank-correct elaborations:
1. sum (rep (length xss))

2. sum (map length xss)

3. map sum (map (map length) (rep xss))

4. ...

Challenge: ambiguity

sum : []int → int
length : []a → int
xss : [][]int

sum (length xss)

Many rank-correct elaborations:
1. sum (rep (length xss))

2. sum (map length xss)

3. map sum (map (map length) (rep xss))

4. ...

The Strategy

Rule 1
An application can be mapped or repped (or neither) but never both.

OK:
▶ map f x
▶ g (rep (rep x))
▶ (map (map h) x) (rep y)

BAD:
▶ map f (rep x)
▶ (map (map g)) (rep x)

Never necessary to map and rep in the same application to obtain a
rank-correct program.

The Strategy

Rule 1
An application can be mapped or repped (or neither) but never both.

OK:
▶ map f x

▶ g (rep (rep x))
▶ (map (map h) x) (rep y)

BAD:
▶ map f (rep x)
▶ (map (map g)) (rep x)

Never necessary to map and rep in the same application to obtain a
rank-correct program.

The Strategy

Rule 1
An application can be mapped or repped (or neither) but never both.

OK:
▶ map f x
▶ g (rep (rep x))

▶ (map (map h) x) (rep y)

BAD:
▶ map f (rep x)
▶ (map (map g)) (rep x)

Never necessary to map and rep in the same application to obtain a
rank-correct program.

The Strategy

Rule 1
An application can be mapped or repped (or neither) but never both.

OK:
▶ map f x
▶ g (rep (rep x))
▶ (map (map h) x) (rep y)

BAD:
▶ map f (rep x)
▶ (map (map g)) (rep x)

Never necessary to map and rep in the same application to obtain a
rank-correct program.

The Strategy

Rule 1
An application can be mapped or repped (or neither) but never both.

OK:
▶ map f x
▶ g (rep (rep x))
▶ (map (map h) x) (rep y)

BAD:
▶ map f (rep x)
▶ (map (map g)) (rep x)

Never necessary to map and rep in the same application to obtain a
rank-correct program.

The Strategy

Rule 1
An application can be mapped or repped (or neither) but never both.

OK:
▶ map f x
▶ g (rep (rep x))
▶ (map (map h) x) (rep y)

BAD:
▶ map f (rep x)
▶ (map (map g)) (rep x)

Never necessary to map and rep in the same application to obtain a
rank-correct program.

The Strategy

Rule 2
Minimize the number of inserted maps and reps.

Generally aligns with programmer’s intent; makes for a simple
mental model.

The minimization is over all the applications of a top-level definition.
▶ Only have to choose from the set of minimal solutions.

sum (length xss) can be elaborated to:
1. sum (rep (length xss))
2. sum (map length xss)
3. map sum (map (map length) (rep xss))
4. ...

The Strategy

Rule 2
Minimize the number of inserted maps and reps.

Generally aligns with programmer’s intent; makes for a simple
mental model.

The minimization is over all the applications of a top-level definition.
▶ Only have to choose from the set of minimal solutions.

sum (length xss) can be elaborated to:
1. sum (rep (length xss))
2. sum (map length xss)
3. map sum (map (map length) (rep xss))
4. ...

The Strategy

Rule 2
Minimize the number of inserted maps and reps.

Generally aligns with programmer’s intent; makes for a simple
mental model.

The minimization is over all the applications of a top-level definition.
▶ Only have to choose from the set of minimal solutions.

sum (length xss) can be elaborated to:
1. sum (rep (length xss))
2. sum (map length xss)
3. map sum (map (map length) (rep xss))
4. ...

The Strategy

Rule 2
Minimize the number of inserted maps and reps.

Generally aligns with programmer’s intent; makes for a simple
mental model.

The minimization is over all the applications of a top-level definition.
▶ Only have to choose from the set of minimal solutions.

sum (length xss) can be elaborated to:
1. sum (rep (length xss))

2. sum (map length xss)
3. map sum (map (map length) (rep xss))
4. ...

The Strategy

Rule 2
Minimize the number of inserted maps and reps.

Generally aligns with programmer’s intent; makes for a simple
mental model.

The minimization is over all the applications of a top-level definition.
▶ Only have to choose from the set of minimal solutions.

sum (length xss) can be elaborated to:
1. sum (rep (length xss))
2. sum (map length xss)

3. map sum (map (map length) (rep xss))
4. ...

The Strategy

Rule 2
Minimize the number of inserted maps and reps.

Generally aligns with programmer’s intent; makes for a simple
mental model.

The minimization is over all the applications of a top-level definition.
▶ Only have to choose from the set of minimal solutions.

sum (length xss) can be elaborated to:
1. sum (rep (length xss))
2. sum (map length xss)
3. map sum (map (map length) (rep xss))

4. ...

The Strategy

Rule 2
Minimize the number of inserted maps and reps.

Generally aligns with programmer’s intent; makes for a simple
mental model.

The minimization is over all the applications of a top-level definition.
▶ Only have to choose from the set of minimal solutions.

sum (length xss) can be elaborated to:
1. sum (rep (length xss))
2. sum (map length xss)
3. map sum (map (map length) (rep xss))
4. ...

The Strategy

Rule 2
Minimize the number of inserted maps and reps.

Generally aligns with programmer’s intent; makes for a simple
mental model.

The minimization is over all the applications of a top-level definition.
▶ Only have to choose from the set of minimal solutions.

sum (length xss) can be elaborated to:
1. sum (rep (length xss))
2. sum (map length xss)
3. map sum (map (map length) (rep xss))
4. ...

Challenge: elaboration is global

sum (length xss) can be elaborated to:
1. sum (rep (length xss))

▶ Local reasoning: in the application of sum to length xss, the argument is
underdimensioned, so a rep is inserted.

2. sum (map length xss)
▶ Global reasoning: length xss is rank-correct as-is, but a map is inserted

because of the outer sum application.

Elaborations of inner applications affect outer applications.
▶ To find all minimal elaborations, must consider all applications

simultaneously.

Challenge: elaboration is global

sum (length xss) can be elaborated to:
1. sum (rep (length xss))

▶ Local reasoning: in the application of sum to length xss, the argument is
underdimensioned, so a rep is inserted.

2. sum (map length xss)
▶ Global reasoning: length xss is rank-correct as-is, but a map is inserted

because of the outer sum application.

Elaborations of inner applications affect outer applications.
▶ To find all minimal elaborations, must consider all applications

simultaneously.

Challenge: elaboration is global

sum (length xss) can be elaborated to:
1. sum (rep (length xss))

▶ Local reasoning: in the application of sum to length xss, the argument is
underdimensioned, so a rep is inserted.

2. sum (map length xss)
▶ Global reasoning: length xss is rank-correct as-is, but a map is inserted

because of the outer sum application.

Elaborations of inner applications affect outer applications.
▶ To find all minimal elaborations, must consider all applications

simultaneously.

Challenge: type variables

Futhark has parametric polymorphism:

id : a → a
length : []a → int

A type variable can have any rank!

How do we statically insert maps and reps in the presence of type
variables, whose ranks aren’t known?

Challenge: type variables

Futhark has parametric polymorphism:

id : a → a
length : []a → int

A type variable can have any rank!

How do we statically insert maps and reps in the presence of type
variables, whose ranks aren’t known?

Challenge: type variables

Futhark has parametric polymorphism:

id : a → a
length : []a → int

A type variable can have any rank!

How do we statically insert maps and reps in the presence of type
variables, whose ranks aren’t known?

Constraints

Suppose

f : p → b
x : a

The application f x has constraint

p = a

We only care about rank, so relax to

|p| = |a|

where |p| is the rank of p.
For example, |[][]int| = 2 and |int| = 0.

Constraints

Suppose

f : p → b
x : a

The application f x has constraint

p = a

We only care about rank, so relax to

|p| = |a|

where |p| is the rank of p.
For example, |[][]int| = 2 and |int| = 0.

Constraints

Suppose

f : p → b
x : a

The application f x has constraint

p = a

We only care about rank, so relax to

|p| = |a|

where |p| is the rank of p.
For example, |[][]int| = 2 and |int| = 0.

Constraints - map
Rank polymorphisms means rank differences are allowed.

Case |p| < |a|:
▶ Introduce a rank variableM to account for the difference:

M+ |p| = |a|

▶ sqrt : int → int
[1,2,3] : []int

Application sqrt [1,2,3] gives the constraint

M+ |int|︸ ︷︷ ︸
0

= |[]int|︸ ︷︷ ︸
1

=⇒ M = 1

▶ M is equal to the number of maps required:

map sqrt [1,2,3]

Constraints - map
Rank polymorphisms means rank differences are allowed.

Case |p| < |a|:
▶ Introduce a rank variableM to account for the difference:

M+ |p| = |a|

▶ sqrt : int → int
[1,2,3] : []int

Application sqrt [1,2,3] gives the constraint

M+ |int|︸ ︷︷ ︸
0

= |[]int|︸ ︷︷ ︸
1

=⇒ M = 1

▶ M is equal to the number of maps required:

map sqrt [1,2,3]

Constraints - map
Rank polymorphisms means rank differences are allowed.

Case |p| < |a|:
▶ Introduce a rank variableM to account for the difference:

M+ |p| = |a|

▶ sqrt : int → int
[1,2,3] : []int

Application sqrt [1,2,3] gives the constraint

M+ |int|︸ ︷︷ ︸
0

= |[]int|︸ ︷︷ ︸
1

=⇒ M = 1

▶ M is equal to the number of maps required:

map sqrt [1,2,3]

Constraints - map
Rank polymorphisms means rank differences are allowed.

Case |p| < |a|:
▶ Introduce a rank variableM to account for the difference:

M+ |p| = |a|

▶ sqrt : int → int
[1,2,3] : []int

Application sqrt [1,2,3] gives the constraint

M+ |int|︸ ︷︷ ︸
0

= |[]int|︸ ︷︷ ︸
1

=⇒ M = 1

▶ M is equal to the number of maps required:

map sqrt [1,2,3]

Constraints - rep

Case |p| > |a|:
▶ Introduce a rank variable R to account for the difference:

|p| = R+ |a|

▶ Example: length : []b → int The application length 3 gives the
constraint

|[] b| = R+ |int|
1 + |b| = R =⇒ R = 1, |b| = 0

R = 2, |b| = 1
. . .

▶ R is equal to the number of reps required:
▶ length (rep 3)
▶ length (rep (rep 3))
▶ . . .

Constraints - rep

Case |p| > |a|:
▶ Introduce a rank variable R to account for the difference:

|p| = R+ |a|

▶ Example: length : []b → int The application length 3 gives the
constraint

|[] b| = R+ |int|
1 + |b| = R =⇒ R = 1, |b| = 0

R = 2, |b| = 1
. . .

▶ R is equal to the number of reps required:
▶ length (rep 3)
▶ length (rep (rep 3))
▶ . . .

Constraints - rep

Case |p| > |a|:
▶ Introduce a rank variable R to account for the difference:

|p| = R+ |a|

▶ Example: length : []b → int The application length 3 gives the
constraint

|[] b| = R+ |int|
1 + |b| = R =⇒ R = 1, |b| = 0

R = 2, |b| = 1
. . .

▶ R is equal to the number of reps required:
▶ length (rep 3)
▶ length (rep (rep 3))
▶ . . .

Constraints - rep

Case |p| > |a|:
▶ Introduce a rank variable R to account for the difference:

|p| = R+ |a|

▶ Example: length : []b → int The application length 3 gives the
constraint

|[] b| = R+ |int|
1 + |b| = R =⇒ R = 1, |b| = 0

R = 2, |b| = 1
. . .

▶ R is equal to the number of reps required:
▶ length (rep 3)
▶ length (rep (rep 3))
▶ . . .

Constraints - Summary

Each application of a function f : p → c to an argument x : a
generates a constraint

M+ |p| = R+ |a|

Rule 1: can either map or rep but not both

M = 0 or R = 0

Constraints - Summary

Each application of a function f : p → c to an argument x : a
generates a constraint

M+ |p| = R+ |a|

Rule 1: can either map or rep but not both

M = 0 or R = 0

Constraints to ILPs

Collect the constraints for each function application.

Example: sum (length xss)

minimize
M1 + R1 +M2 + R2

subject to

M1 + 1 + |a| = R1 + 2
M1 = 0 or R1 = 0

}
length

M2 + 1 = R2 +M1
M2 = 0 or R2 = 0

}
sum

Rule 2: Minimize the number of maps and reps
The or-constraints can be linearized to obtain an integer linear
program (ILP).

Constraints to ILPs

Collect the constraints for each function application.
Example: sum (length xss)

minimize
M1 + R1 +M2 + R2

subject to

M1 + 1 + |a| = R1 + 2
M1 = 0 or R1 = 0

}
length

M2 + 1 = R2 +M1
M2 = 0 or R2 = 0

}
sum

Rule 2: Minimize the number of maps and reps
The or-constraints can be linearized to obtain an integer linear
program (ILP).

Constraints to ILPs

Collect the constraints for each function application.
Example: sum (length xss)

minimize
M1 + R1 +M2 + R2

subject to

M1 + 1 + |a| = R1 + 2
M1 = 0 or R1 = 0

}
length

M2 + 1 = R2 +M1
M2 = 0 or R2 = 0

}
sum

Rule 2: Minimize the number of maps and reps
The or-constraints can be linearized to obtain an integer linear
program (ILP).

Constraints to ILPs

Collect the constraints for each function application.
Example: sum (length xss)

minimize
M1 + R1 +M2 + R2

subject to

M1 + 1 + |a| = R1 + 2
M1 = 0 or R1 = 0

}
length

M2 + 1 = R2 +M1
M2 = 0 or R2 = 0

}
sum

Rule 2: Minimize the number of maps and reps
The or-constraints can be linearized to obtain an integer linear
program (ILP).

Constraints to ILPs

Collect the constraints for each function application.
Example: sum (length xss)

minimize
M1 + R1 +M2 + R2

subject to

M1 + 1 + |a| = R1 + 2
M1 = 0 or R1 = 0

}
length

M2 + 1 = R2 +M1
M2 = 0 or R2 = 0

}
sum

Rule 2: Minimize the number of maps and reps

The or-constraints can be linearized to obtain an integer linear
program (ILP).

Constraints to ILPs

Collect the constraints for each function application.
Example: sum (length xss)

minimize
M1 + R1 +M2 + R2

subject to
M1 + 1 + |a| = R1 + 2
M1 = 0 or R1 = 0

}
length

M2 + 1 = R2 +M1
M2 = 0 or R2 = 0

}
sum

Rule 2: Minimize the number of maps and reps

The or-constraints can be linearized to obtain an integer linear
program (ILP).

Constraints to ILPs

Collect the constraints for each function application.
Example: sum (length xss)

minimize
M1 + R1 +M2 + R2

subject to
M1 + 1 + |a| = R1 + 2
M1 = 0 or R1 = 0

}
length

M2 + 1 = R2 +M1
M2 = 0 or R2 = 0

}
sum

Rule 2: Minimize the number of maps and reps
The or-constraints can be linearized to obtain an integer linear
program (ILP).

Automap TL;DR

1. For each application generate rank equality and Rule 1 (map or rep
but not both) constraints.

2. Transform the constraint set into an ILP and solve.

3. Use the ILP solution to elaborate. E.g., if the i-th application f x has
Mi = 3 and Ri = 0:

f x =⇒ map (map (map f)) x

4. Type check elaborated program and continue with compilation as
usual.

Automap TL;DR

1. For each application generate rank equality and Rule 1 (map or rep
but not both) constraints.

2. Transform the constraint set into an ILP and solve.

3. Use the ILP solution to elaborate. E.g., if the i-th application f x has
Mi = 3 and Ri = 0:

f x =⇒ map (map (map f)) x

4. Type check elaborated program and continue with compilation as
usual.

Automap TL;DR

1. For each application generate rank equality and Rule 1 (map or rep
but not both) constraints.

2. Transform the constraint set into an ILP and solve.

3. Use the ILP solution to elaborate. E.g., if the i-th application f x has
Mi = 3 and Ri = 0:

f x =⇒ map (map (map f)) x

4. Type check elaborated program and continue with compilation as
usual.

Automap TL;DR

1. For each application generate rank equality and Rule 1 (map or rep
but not both) constraints.

2. Transform the constraint set into an ILP and solve.

3. Use the ILP solution to elaborate. E.g., if the i-th application f x has
Mi = 3 and Ri = 0:

f x =⇒ map (map (map f)) x

4. Type check elaborated program and continue with compilation as
usual.

User experience

map and rep are normal source-level functions.
▶ Programmer free to use Automap to whatever extent they wish.

Ambiguity feedback:

Error: sum (length xss) has multiple elaborations:
1. sum (rep (length xss))
2. sum (map length xss)

▶ Nice error messages.

▶ Disambiguation is easy: just insert a map or rep into the source.

Fully transparent: the compiler can always elaborate any implicit
maps or reps.

User experience

map and rep are normal source-level functions.
▶ Programmer free to use Automap to whatever extent they wish.

Ambiguity feedback:

Error: sum (length xss) has multiple elaborations:
1. sum (rep (length xss))
2. sum (map length xss)

▶ Nice error messages.

▶ Disambiguation is easy: just insert a map or rep into the source.

Fully transparent: the compiler can always elaborate any implicit
maps or reps.

User experience

map and rep are normal source-level functions.
▶ Programmer free to use Automap to whatever extent they wish.

Ambiguity feedback:

Error: sum (length xss) has multiple elaborations:
1. sum (rep (length xss))
2. sum (map length xss)

▶ Nice error messages.

▶ Disambiguation is easy: just insert a map or rep into the source.

Fully transparent: the compiler can always elaborate any implicit
maps or reps.

User experience

map and rep are normal source-level functions.
▶ Programmer free to use Automap to whatever extent they wish.

Ambiguity feedback:

Error: sum (length xss) has multiple elaborations:
1. sum (rep (length xss))
2. sum (map length xss)

▶ Nice error messages.

▶ Disambiguation is easy: just insert a map or rep into the source.

Fully transparent: the compiler can always elaborate any implicit
maps or reps.

Practical impact

We implemented Automap in Futhark, a functional array language
that supports parametric polymorphism and top-level
let-polymorphism.

Difficult to quantify value of feature that is glorified syntax sugar.

We (manually!) rewrote programs to take advantage of Automap
when we judged it improved readability.

Practical impact

We implemented Automap in Futhark, a functional array language
that supports parametric polymorphism and top-level
let-polymorphism.

Difficult to quantify value of feature that is glorified syntax sugar.

We (manually!) rewrote programs to take advantage of Automap
when we judged it improved readability.

Practical impact

We implemented Automap in Futhark, a functional array language
that supports parametric polymorphism and top-level
let-polymorphism.

Difficult to quantify value of feature that is glorified syntax sugar.

We (manually!) rewrote programs to take advantage of Automap
when we judged it improved readability.

Practical impact: before

def main [nK][nX]
(kx: [nK]f32) (ky: [nK]f32) (kz: [nK]f32)
(x: [nX]f32) (y: [nX]f32) (z: [nX]f32)
(phiR: [nK]f32) (phiI: [nK]f32)

: ([nX]f32, [nX]f32) =
let phiM = map (λr i → r*r + i*i) phiR phiI
let as = map (λx_e y_e z_e →

map (2*pi*)
(map (λkx_e ky_e kz_e →

kx_e*x_e + ky_e*y_e + kz_e*z_e)
kx ky kz))

x y z
let qr = map (λa → sum(map2 (*) phiM (map cos a))) as
let qi = map (λa → sum(map2 (*) phiM (map sin a))) as
in (qr, qi)

Practical impact: after

def main [nK][nX]
(kx: [nK]f32) (ky: [nK]f32) (kz: [nK]f32)
(x: [nX]f32) (y: [nX]f32) (z: [nX]f32)
(phiR: [nK]f32) (phiI: [nK]f32)

: ([nX]f32, [nX]f32) =
let phiM = phiR*phiR + phiI*phiI
let as = 2*pi*(kx*transpose (rep x)

+ ky*transpose (rep y)
+ kz*transpose (rep z))

let qr = sum (cos as * phiM)
let qi = sum (sin as * phiM)
in (qr, qi)

Metrics from changing a benchmark suite

Proportion of ILP problems
that have less than some
given number of constraints.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 4 16 64 256 1024 4096 16384

Fr
a
ct

io
n

Size of ILP problem

Number of programs: 67
Lines of code: 8621⇒ 8515
Change in maps: 467⇒ 213
Largest ILP size: 28104 constraints
Median ILP size: 16 constraints
Mean ILP size: 116 constraints
Mean type checking slowdown: 2.50×

Related work

Typed Remora:
▶ Very general/powerful; binds shape variables in types:

sum : ∀S.S int→ int

▶ Inference is very difficult.

Naperian Functors (Jeremy Gibbons):
▶ Cool rank polymorphism encoding in Haskell.
▶ Complicated function types (and potentially error messages).

Single-assignment C:
▶ Has rank specialization where functions have specialized definitions

depending on the rank of the input.
▶ No parametric polymorphism or higher-order functions.

Related work

Typed Remora:
▶ Very general/powerful; binds shape variables in types:

sum : ∀S.S int→ int

▶ Inference is very difficult.

Naperian Functors (Jeremy Gibbons):
▶ Cool rank polymorphism encoding in Haskell.
▶ Complicated function types (and potentially error messages).

Single-assignment C:
▶ Has rank specialization where functions have specialized definitions

depending on the rank of the input.
▶ No parametric polymorphism or higher-order functions.

Related work

Typed Remora:
▶ Very general/powerful; binds shape variables in types:

sum : ∀S.S int→ int

▶ Inference is very difficult.

Naperian Functors (Jeremy Gibbons):
▶ Cool rank polymorphism encoding in Haskell.
▶ Complicated function types (and potentially error messages).

Single-assignment C:
▶ Has rank specialization where functions have specialized definitions

depending on the rank of the input.
▶ No parametric polymorphism or higher-order functions.

Summary

Automap is a conservative extension of/compatible with a
Hindley-Milner-style type system for array programming.

Anything inferred can also be inserted explicitly (much like classic
type systems!)

Type checking based on some heavy machinery (ILP), but we
suspect of a fairly simple kind.

Implemented in Futhark, but not really production ready yet.
▶ TODO: quality of type errors, type checking speed, better ambiguity

checking.

Summary

Automap is a conservative extension of/compatible with a
Hindley-Milner-style type system for array programming.

Anything inferred can also be inserted explicitly (much like classic
type systems!)

Type checking based on some heavy machinery (ILP), but we
suspect of a fairly simple kind.

Implemented in Futhark, but not really production ready yet.
▶ TODO: quality of type errors, type checking speed, better ambiguity

checking.

Summary

Automap is a conservative extension of/compatible with a
Hindley-Milner-style type system for array programming.

Anything inferred can also be inserted explicitly (much like classic
type systems!)

Type checking based on some heavy machinery (ILP), but we
suspect of a fairly simple kind.

Implemented in Futhark, but not really production ready yet.
▶ TODO: quality of type errors, type checking speed, better ambiguity

checking.

Summary

Automap is a conservative extension of/compatible with a
Hindley-Milner-style type system for array programming.

Anything inferred can also be inserted explicitly (much like classic
type systems!)

Type checking based on some heavy machinery (ILP), but we
suspect of a fairly simple kind.

Implemented in Futhark, but not really production ready yet.
▶ TODO: quality of type errors, type checking speed, better ambiguity

checking.

Final Things

Check out Futhark: https://futhark-lang.org
▶ There’s a blog post on Automap that covers the Automap-portion of

this talk in more detail.

▶ The papers for each thing can also be found there, along with my PhD
thesis.

These slides and more about me at https://rschenck.com.

https://futhark-lang.org
https://rschenck.com

Final Thanks

Thanks for coming to my defense!

Thanks to my advisors:
▶ Fritz Henglein, Cosmin E. Oancea, and Troels Henriksen.
▶ And everyone else at the PLTC/DIKU!

Thanks to my commitee:
▶ Michael Kirkedal for being my committee chair.
▶ Sven-Bodo Scholz and Paul Kelly (and for making the trip all the way

here to Copenhagen).

And thanks to all the hedgehog artists:
▶ Nikolaj Hey Hinnerskov, Fillippa Biil, Lea Henriksen, Lys Sanz Moreta,

the internet, and more.

That's all!

	A Very Short Introduction to AD
	AD Transformation
	Differentiating Parallel Constructs
	Loops
	Benchmarks
	Conclusions

