
Pantomime: Simulation-Based Leakage Proofs for Hardware
Side-Channel Security

Robin Webbers
Vrije Universiteit Amsterdam
Amsterdam, Netherlands
r.m.a.webbers@vu.nl

Robert Schenck
Vrije Universiteit Amsterdam
Amsterdam, Netherlands

r@bert.lol

Alp Adnan Basar
Vrije Universiteit Amsterdam
Amsterdam, Netherlands

a.a.basar@vu.nl

Kristina Sojakova
Vrije Universiteit Amsterdam
Amsterdam, Netherlands
k.sojakova@gmail.com

Klaus v. Gleissenthall
Vrije Universiteit Amsterdam
Amsterdam, Netherlands

k.freiherrvongleissenthal@vu.nl

Abstract

Tools for verifying leakage descriptions of hardware aim to en-
sure that a given hardware design doesn’t leak secrets via its mi-
croarchitecture when executing programs with appropriate coun-
termeasures. However, current techniques either don’t allow for
leakage descriptions expressive enough to capture real-world soft-
ware countermeasures like constant time programming, or they
rely on expensive solvers and handwritten invariants, making them
difficult to apply to larger designs—especially for hardware design-
ers who are not experts in formal verification. In this paper, we
present a new approach to leakage verification: simulation-based
leakage proofs, where proofs are developed alongside the design.

Inspired by techniques in cryptography, simulation-based leak-
age proofs show that a leakage description correctly captures a
hardware design by constructing a simulator—another hardware
design that must faithfully replicate all attacker-observable behav-
ior from explicitly leaked secrets. Simulation-based leakage proofs
are easy to write and to debug: writing a simulator just means writ-
ing another hardware module, which is what hardware designers
are already best at. They also capture all common software defenses
and make proof checking orders of magnitude faster.

We implemented simulation-based leakage proofs in Pantomime,
a tool that supports writing processors and their leakage proofs in
Haskell; we report on using Pantomime to write and verify AIM-
Core, a 5-stage in-order processor. Unlike previous leakage proofs,
which are conditional on the unproven functional correctness of
the CPU, our proofs hold unconditionally.
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1 Introduction

Context. Side-channel attacks via cache and timing can leak se-
crets used in private computations [22, 25, 30, 31, 45]. To prevent
side-channels in software, programmers use countermeasures like
branch balancing [1, 6, 44], and constant-time (or data-oblivious)
programming [2, 9, 12, 43]. Whether these countermeasures are
effective crucially depends on the underlying hardware. Unfortu-
nately, modern hardware designs are mind-bendingly complex due
to their highly parallel nature, their many microarchitectural op-
timizations like fast paths [3], pre-fetching [13], and speculative

execution [21, 28, 33], and their various micro-architectural buffers
[39, 40]. This complexity makes it hard to manually audit even sim-
ple designs to check whether software with appropriate defenses
will truly execute securely.
Problem. To increase our confidence that hardware designs are
keeping up their end of the promise, a string of recent work aims
to formally verify existing open-source hardware designs against
descriptions of their intended leakage [4, 5, 16–18, 20, 36–38, 41].
While there has been tremendous progress in the area and these
techniques have now managed to verify leakage descriptions for a
number of open-source processors, their focus on verifying existing
designs comes with a number of drawbacks. Their leakage descrip-
tions are either not expressive enough to capture real-world de-
fenses like the constant-time programming discipline [4, 5, 16–18],
or they heavily rely on expensive solvers—either to find inductive
invariants [37, 38, 41], or to exhaustively explore the design’s state
space [20, 36]—which limits their applicability to larger designs.
As an alternative to fully automated proofs via solvers, one can
instead ask the user to supply missing inductive invariants by hand.
In fact, several existing methods already require users to supply
certain hard-to-find invariants manually [18, 41]. While this helps
with scaling, it places a heavy burden on the user: inductive in-
variants are difficult to come up with by hand and even harder to
debug when they are wrong [27]. This is especially true for hard-
ware designers, unless they also happen to be experts in formal
verification.
Our Solution. In this paper, we propose simulation-based leak-
age proofs—a co-design approach to verifying hardware against
explicit leakage descriptions, where proofs are developed alongside
the code. Based on insights borrowed from cryptography [10, 24],
a simulation-based leakage proof demonstrates the correctness of
a leakage description by constructing a simulator—another hard-
ware circuit which must faithfully replicate all attacker-observable
behavior of the original design, while only being granted access to
explicitly leaked secrets. As simulators are just programs, they can
be written, debugged, and executed like any other hardware design.
This makes simulation-based leakage proofs a good candidate for
proofs that are written alongside the design by the hardware devel-
opers themselves. Indeed, the main proof effort lies in doing what
hardware designers are already best at: writing hardware designs.
Simulation-based leakage proofs are expressive and capture all
common software defenses against cache and timing side-channels.
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They are also fast to check, as we only need to show single-step
equivalence between the simulator and the original design.
Simulation-Based Leakage Proofs. To show that a hardware
circuit c is secure via a simulation-based leakage proof, we first
have to provide a precise description of its intended leakage in
the form of a circuit leak. For example, if c is an adder with a
fast path on input 0, the leakage description leak reveals whether
or not the input is 0. Next, we model the attacker’s view of the
computation as a circuit obs. For example, obs may reveal the time
it takes to complete the computation by indicating whether an
output was produced in a given clock cycle. To prove that the
leakage description leak faithfully captures everything an attacker
can learn about potential secret information processed by c, we have
to construct a simulator circuit sim such that the original circuit
composed with the attacker observation function obs, written as
c ◦ obs, is indistinguishable from the composition of the leakage
description leak and the simulator sim, written as leak ◦ sim. In
our example, simulator sim reproduces the timing behavior of c by
delaying inputs that don’t take the fast path. The existence of a
simulator means that we can reconstruct all attacker-observable
behavior from information that has been explicitly leaked. In turn,
this means the attacker learns no more than what is specified via
the explicit leakage description.
Functional Programs asHardware.While simulation-based leak-
age proofs can be applied to hardware designs written in any lan-
guage, we present a concrete instance of our proof method for
circuits expressed as functional programs. Building on a long line
of work connecting functional programs and hardware [8, 34], we
represent the hardware’s single clock tick transition function as
a functional program that takes a state and input to a state and
output.
Equivalence Via State Projection. Next, we construct a proof
system for proving equivalence between circuits. We build on the
insight that functions describing hardware behavior within a clock
tick are loop-free and therefore allow for easy equivalence proofs. In-
terestingly, our proofs generally require us to prove an equivalence
between functions of different types. To enable these proofs, we
propose a new state projection rule, which allows changing the type
of a circuit’s state as long as this change doesn’t affect its observ-
able behavior, thereby establishing a refinement relation between
the two circuits [23]. Except for state projection functions—which
translate between the states of different types and have to be pro-
vided by the user—equivalence proofs can be fully automated via
an SMT solver.
Implementation and Evaluation. We implemented our method
in Pantomime, a tool for writing processors and proofs in unre-
stricted Haskell (including support for higher-order functions, type
classes, abstract data types, and monads). Hardware descriptions
written with Pantomime can be extracted to hardware description
languages using C𝜆aSH [7]. To prove equivalence between simula-
tor and implementation, we developed a new symbolic execution
engine based on Grisette [26]. The engine proves function equiva-
lence between expressions in GHC Core using the state projection
rule and interprets C𝜆aSH data types to accurately model the be-
havior of the extracted hardware. We used Pantomime to write
AIMCore, a 5-stage RISC-V CPU that supports the full base integer

circuitIS S( )O,

Figure 1: Circuits take state of type S, an input of type I, and

return a pair of type (S,O).

instruction set, and verify it against a leakage description. Unlike
[36, 41], where leakage proofs are conditional on the (unproven)
functional correctness of the CPU, our proof of AIMCore is uncon-
ditional. Moreover, proof checking is orders of magnitude faster
than previous methods, making Pantomime suitable for interactive
use.

Contributions. In summary, we make the following contributions.

• Simulation Based Proofs: A co-design approach for veri-
fying leakage descriptions of hardware circuits.

• The State Projection Rule: A proof rule which allows us
to prove the equivalence of circuits with different types.

• Pantomime: An implementation of simulation-based leak-
age proofs in Haskell via a GHC plugin that symbolically
executes GHC Core and interprets hardware data types in
C𝜆aSH.

• AIMCore: A 5-stage RISC-V processor and its leakage
description, resulting in the first processor with an uncon-
ditional leakage proof against the constant-time discipline.

Availability. The full source code for Pantomime and AIMCore is
available in the supplementary material and will be open-sourced.

2 Overview

We illustrate our technique on a simple adder with a fast path (§ 2.1)
and discuss how state (§ 2.2) and verify (§ 2.3) its leakage proof.

2.1 A Simple Adder and its Leakage Description

Circuits. We treat hardware designs as functional programs. A
circuit is a function of type S -> I -> (S, O), where S represents
the circuit’s state (i.e., the current values of all its registers), I and
O represent its inputs and outputs, and (S, O) represents a pair
combining the circuit’s state with its output of type O—see Figure 1.

Adder. Our running example is an adder that computes the sum of
two integer inputs a and b. The adder has a fast path: if its first input
a is 0 (in which case the result is just its second input b), the adder
produces an output right away in the same clock cycle. Otherwise,
the adder needs some additional time to compute a + b and outputs
the result one cycle later. The timing difference between the paths
may leak information about the inputs to an attacker. We show
the adder’s code in Listing 1 using Haskell syntax. The adder’s
internal state S is an optional integer of type Maybe Int, whose
values are either Nothing or Just v, where v has type Int. When
taking the slow path, the adder stores the intermediary result of
the computation in its state. The adder’s input is a pair of optional
integers and its output is a single optional integer. An input with
value Nothing means no input is available; for example, when the
client of the adder is waiting for the result of another computation.
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1 add :: Maybe Int -> (Maybe Int , Maybe Int)

2 -> (Maybe Int , Maybe Int)

3 add _ (Just 0, Just b) = (Nothing , Just b)

4 add _ (Just a, Just b) = (Just (a+b), Nothing)

5 add s _ = (Nothing , s)

Listing 1: Running Example: A simple adder with a fast-path.

Computing the Output. When add’s first component is Just 0,
we take the fast path (line 3): we update the state to Nothing—there’s
nothing to save—and output Just b. If it’s non-zero, we take the
slow path (line 4): we set the state to Just (a + b) to keep track
of the sum that will be output in the next clock cycle and output
Nothing to signal a pending result. If either of the inputs is Nothing
(line 5), neither of the branches applies: we output the stored value,
if any, and reset the state to Nothing.
From Circuits to Transducers. Circuits describe how hardware
evolves from one clock tick to the next. mealy, shown below, trans-
forms a circuit into a transducer—a function of type [I] -> [O],
which maps streams of inputs to streams of outputs. mealy takes a
single-clock-tick circuit description and an initial state and returns
the corresponding transducer: on input, it applies the circuit to
update its state and produce an output, which is prepended onto
the outputs produced by recursing on the remaining inputs.

1 mealy :: (S -> I -> (S, O)) -> S -> [I] -> [O]

2 mealy _ _ [] = []

3 mealy circuit s (i:is) =

4 let (s', o) = circuit s i in

5 o : mealy circuit s' is

Running the Adder. On add, initial state Nothing, and inputs
1 is = [(Just 1, Just 1), (Nothing , Nothing),

2 (Just 0, Just 1), (Nothing , Nothing)]

mealy produces the following output:
1 mealy add Nothing is

2 > [Nothing , Just 2, Just 1, Nothing]

Attacker View. Since we are interested in the timing behavior of
the circuit, we model an attacker that can observe whether add

produces an output in a given clock cycle. We model this with
function isJust, shown below, defining our observation function
as obs = isJust.

1 isJust (Just _) = True

2 isJust _ = False

Composing the circuit add with obs produces the combined circuit
add_obs, which records the attacker-observable view of a computa-
tion. In particular, this circuit outputs True in a given clock cycle if
and only if an output was produced by add. To construct add_obs,
we must first define circuit composition.
Sequential Composition. Two circuits c1 :: S1 -> I1 -> (S1,

O1) and c2 :: S2 -> I2 -> (S2, O2) may be composed to form
a new circuit c1 ◦ c2 that first executes c1 and then c2. Figure 2
illustrates circuit composition, and we define ◦ below; in short,
circuit composition uses circuit c1’s output as input to circuit c2,
and combines their individual states.

c1I1S1 c2I2S2

I1 c1 c2○S1( ), S2

S1( )O1, S2( )O2,

S1 S2 )( O2,( , )

Figure 2: For circuits c1, and c2, we write c1 ◦ c2 for their

sequential composition.

1 leak :: (Maybe Int ,Maybe Int) -> (Maybe Bool ,Bool)

2 leak (Just a, i2) = (Just (a == 0), isJust i2)

3 leak (Nothing , i2) = (Nothing , isJust i2)

Listing 2: Leakage function leak takes two optional integers,

like add, and returns leaked values for each component.

1 c1 ◦ c2 :: (S1, S2) -> I1 -> ((S1,S2), O2)

2 c1 ◦ c2 (s1,s2) i1 =

3 let (s1', o1) = c1 s1 i1 in

4 let (s2', o2) = c2 s2 o1 in

5 ((s1',s2 '), o2)

Lifting. We cannot directly apply circuit composition to obs since
it’s not a circuit: it doesn’t have state. Instead, for any function
f :: I -> O, we write lift f to turn f into a circuit by augmenting
it with an empty state: lift f :: () -> I -> ((), O).
Combining the Circuits.We now have the machinery to produce
add_obs, capturing the attacker-observable view of a computation:

1 add_obs :: (Maybe Int , ())

2 -> (Maybe Int , Maybe Int)

3 -> ((Maybe Int , ()), Bool)

4 add_obs = add ◦ (lift obs)

The obs observation function describes an attacker that can observe
the transducer corresponding to circuit add_obs. obsmodels a timing
attacker : for a given initial state and sequence of inputs, the attacker
can see whether an output has been produced in each clock cycle.
For example, running add_obs’s transducer using the initial state
(Nothing, ()) on the inputs is produces the following output list:

1 mealy add_obs (Nothing , ()) is

2 > [False , True , True , False]

Modeling Leakage. Next, we want to capture which information
about the circuit’s inputs is leaked to the attacker via an explicit
leakage description. The adder leaks information about its operands
via timing: if a is 0, the fast-path computation produces an output in
the same clock cycle; otherwise the output is delayed by one cycle.
By observing the presence (or absence) of an output, the attacker
can therefore determine whether a is 0. We capture this leakage via
function leak, shown in Listing 2. The function leak takes the same
inputs as add—a pair of optional integers—and returns a pair of
type (Maybe Bool, Bool) that describes the component-wise input
leakage. The first component of the leakage says whether the first
input was a proper integer a, in which case we also learn whether
a == 0. The second component only says whether the second input
was a proper integer, but we learn nothing about its value. Applying
lift leak on inputs is using mealy produces the following outputs:
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1 sim :: Bool -> (Maybe Bool , Bool) -> (Bool , Bool)

2 sim _ (Just True , True) = (False , True)

3 sim _ (Just False , True) = (True , False)

4 sim s _ = (False , s)

Listing 3: Simulator sim which replicates the attacker-

observable behavior of add using the outputs of leak.

1 mealy (lift leak) () is

2 > [(Just False , True), (Nothing , False),

3 (Just True , True), (Nothing , False)]

While the leakage and observation are pure, stateless functions
here, they can be arbitrary stateful computations in general.

2.2 Proving Correctness via a Simulator Circuit

Our leakage description must contain enough information to re-
construct the full observable behavior of the adder for an attacker
observing timing. To prove this, we build a simulator—a circuit that
computes the observable behavior of the adder (as defined by obs)
solely from the leakage description leak. The existence of a simu-
lator guarantees that a timing attacker can learn no information
beyond what is leaked explicitly via leak when observing the cir-
cuit add. Indeed, if leak were missing any relevant information, the
simulator could not faithfully reproduce add’s observable behavior.
Simulator. In our proof system, the simulator is a proof artifact
produced by the user. The simulator circuit sim is shown in Listing
3 and closely follows circuit add. However, sim’s internal state is
of type Bool instead of Maybe Int. This is sufficient; the simulator
only needs to keep track of whether there is a pending computation
from a previous cycle—it doesn’t need to know the value. The
simulator accepts an input of type (Maybe Bool, Bool), matching
leak’s output, and produces a Bool, matching add_obs’s output.
If the leakage is (Just True, True) (line 2), sim simulates the
fast path: its state is updated to False—there is no new pending
computation—and it outputs True to indicate that the current cycle
yielded an output. If the leakage is (Just False, True) (line 3), sim
simulates the slow path: its state is set to True to reflect that there
is a pending computation and it outputs False to indicate that the
current cycle yielded no new output. Otherwise (line 4), it outputs
the saved state—which is True if there’s a pending computation and
False otherwise—and sets the new state to False.
Combining the Circuits. Composing leak with sim produces the
combined circuit that forwards the result of leak to the simulator:

1 leak_sim :: ((), Bool)

2 -> (Maybe Int , Maybe Int)

3 -> (((), Bool), Bool)

4 leak_sim = (lift leak) ◦ sim

Correctness of the Leakage Description. Circuits add_obs and
leak_sim both take a pair of optional integers as an input and pro-
duce a Boolean as an output. The transducers mealy add_obs (

Nothing,()) and mealy leak_sim ((),Nothing) thus have the same
type: [(Maybe Int, Maybe Int)] -> [Bool]. Indeed, if the simula-
tor is constructed correctly, the two transducers should coincide
as functions. To prove that leak correctly captures circuit add’s

add_obs proj proj leak_sim
I
S

O
S' S

I O
S'

Figure 3: Proof obligation for the correctness of leak with

respect to add. S = (Maybe Int, ()), S' = ((), Bool), I = (Maybe

Int, Maybe Int), and O = Bool. ≡ is input/output equivalence.

leakage with respect to obs, we need to prove that the transducers
of circuits add_obs and circuit leak_sim behave the same.

Different Types. However, when we view add_obs and leak_sim

at the level of circuits, they are not equal: indeed, we cannot even
compare them as they have different types. add_obs’s state has
type (Maybe Int, ()), whereas leak_sim’s state has type ((), Bool

). Fortunately, equivalence at the circuit level is not our ultimate
goal; we only need the underlying transducers to be equal.

The State Projection Rule. Based on this observation, we intro-
duce the state projection rule to reason about transducer equivalence
of circuits with different state types: if information can be removed
from the circuit’s state—thereby changing its type—without affect-
ing its input/output behavior, then the tranducer’s behavior is also
unaffected. Indeed, if we look back at the definition of add in Listing
1, we can see that the integer value v stored in the state of form
Just v is irrelevant in circuit add_obs. Lines (3) – (4) do not depend
on the state at all. Line (5) does output v, but we discard the result
in add_obs due to the output projection with obs.

2.3 Proof Checking via State Projection

Projection Function.We define the projection function proj using
function isJust from before. This function discards add_obs’s unit
state and applies isJust to discard the actual computation result,
only keeping the information whether there is a value or not, and
finally adds leak_sim’s unit state.

1 proj :: (Maybe Int , ()) -> ((), Bool)

2 proj (s, _) = ((), isJust s)

Applying the State Projection Rule. The state projection rule
asks us to show that applying the projection to the output state
of add_obs yields the same result as applying it to the input state
of leak_sim, thereby showing that leak_sim can compute the same
result as add_obswithout the information we removed. We illustrate
this proof obligation in Figure 3. As the resulting functions have
the same type, we can now prove their equivalence using standard
methods, e.g., an SMT solver.

Summary. To sum up, we’ve shown that the simulator reconstructs
the observable behavior of add, confirming that leakage leak cor-
rectly captures add’s leakage. To apply the state projection rule,
a Pantomime user only has to supply a state projection function,
which removes the irrelevant part of the circuit state. In our im-
plementation, we prove function equivalence using Pantomime’s
symbolic execution engine, described in § 5.
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3 Simulation-Based Leakage Proofs

3.1 Language

We formalize our proof method in a core language (Figure 4) based
on the simply-typed lambda calculus (STLC), extended with records
(labeled product types) and variants (sum types). Since STLC does
not allow recursion, it is a goodmatch for describing the single-step-
behavior of hardware, which must be loop-free. Our type system is
a version of the standard STLC as described, e.g., in [32], slightly
adapted to our purposes. Importantly, our language satisfies the
preservation property that says the type of an expression is invariant
across evaluation.

The language features the usual STLC staples: constants, vari-
ables, lambda abstractions, and applications. Constants are com-
posed of integers and a number of binary and unary operators
(functions), which are used in the translation of expressions in the
language to a hardware description language (see § 3.4). Labels
in variant and record types are denoted by l and are assumed to
be unique within the same record or variant type. We omit type
annotations on function binders as they are not important in our set-
ting. We write

−→
ki to represent a vector of expressions k1, k2, . . . , kn.

Records are constructed with {−−−−−−→li = ei}, wherein each term ei is
assigned the corresponding label li. For a record e, e.l accesses its
field with label l. Term l e constructs an inhabitant of a variant
type with label l.
Syntactic Sugar. We elaborate let p = a in e according to the
choice of pattern p: let x = a in e is elaborated to (𝜆 x. e) a, and
let {l1 = p1, . . . , ln = pn} = a in e elaborates to let p1 = a.l1
in . . . in let pn = a.ln in e. We write 𝜆 x1 . . . xn . e for 𝜆x1 . . . .
𝜆 xn . e, and 𝜆 p. e for 𝜆 x. let p = x in e. If e is a term of a record
type {−−−−−→li : si}, we write e{li := ei} for the single-field update of
the record e to ei at field li, and e{li1 := ei1 } . . . {lik := eik }
for the sequence of updates e{li1 := ei1 } . . . {lik := eik }. Finally,
infix applications aren’t supported: when unambiguous, e1 bop e2
should be understood as syntactic sugar for bop e1 e2.
Evaluation. Figure 5 shows the evaluation rules for the core lan-
guage. Evaluation is based on the reduction relation⇝, which is
defined on closed, well-typed terms of the same type. The substitu-
tion operator [x = e] performs a capture-avoiding substitution of
free occurrences of the variable x with term e. Beta reduction and
the step rules for evaluating applications, records, variants, and case-
expressions are standard. Rule [Record Reduce] reduces a record
to the expression associated with the applied label. Rule [Case
Reduce] evaluates a case expression case lk e of

−−−−−−−−−→
li xi → ei over

a variant by matching lk e with case lk xk, returning ek [xk = e].
Since the STLC is both confluent and strongly normalizing, the
order in which we apply the evaluation rules does not matter and
evaluation always terminates. We write JeK to represent the unique
term obtained by exhaustive application of the evaluation steps to
e. We write⇝∗ for the reflexive-transitive closure of⇝.
Unit, Optional, and Tuple Types. We encode the unit type () as
the empty record type with no fields. For any type t, we encode
Maybe t as the variant type ⟨Just : t, Nothing : ()⟩. Conditionals
if e then e1 else e2 stand for the corresponding case expressions
over the variant type Bool := ⟨true : (), false : ()⟩. We encode
the tuple type (t1, . . . , tn) as the the record type {1 : t1, . . . , n : tn}.

Base Types b ::= Int, Word8, Word16, . . .

Operators bop ::= +,−, . . . binary operators
uop ::= ∼, !, . . . unary operators

Constants c ::= 0, 1, . . . numbers
| bop | uop operators

Types t ::= b base types
| {−−−−−→li : ti} record types

| ⟨−−−−−→li : ti⟩ variant types

| t1 → t2 function types
Terms e ::= c constants

| x variables
| 𝜆x. e abstraction
| e1 e2 application
| {−−−−−−→li = ei} records
| e.l record fields
| l e variants
| case e of

−−−−−−−−−→
lixi → ei pattern match

Extractable s ::= b base types
Types | {−−−−−→li : si} record types

| ⟨−−−−−→li : si⟩ variant types

Patterns p ::= x variables
| {−−−−−−→li = pi} records

Figure 4: Syntax of types and terms in our core language.

e ⇝ e′ [𝜆]
𝜆 x. e ⇝ 𝜆 x. e′

e1 ⇝ e′1 e2 ⇝ e′2 [App]
e1 e2 ⇝ e′1 e

′
2

[Beta Reduce](𝜆x. e1) e2 ⇝ e1 [x = e2]
ei ⇝ e′i [Record Field]−−−−−−→

li = ei ⇝
−−−−−−→
li = e′i

e ⇝ e′ [Record Label]
e.l ⇝ e′ .l

e ⇝ e′ [Variant]
l e ⇝ l e′

e ⇝ e′ [Case]
case e of

−−−−−−−−−→
lixi → ei ⇝ case e′ of

−−−−−−−−−→
lixi → ei

[Record Reduce]
{−−−−−−→li = ei}.lj ⇝ ej

[Case Reduce]
case lk e of

−−−−−−−−−→
lixi → e′i ⇝ e′k [xk = e]

Figure 5: Evaluation rules for our core language.
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Example 3.1. Consider the term
ex1 : Int → Maybe Word32 → (Word32, Word32)
ex1 = 𝜆 s i. (s + 1, case i of Just a→ s + a, Nothing→ s) .

Then we have
Jex1 0 NothingK = (1, 0),
Jex1 0 (Just 1)K = (1, 1) .

3.2 Circuits, Transducers, and Circuit Reduction

Definition 3.2 (circuit). Let S, I, O be types in the core language.
A circuit is a term of type S→ I→ (S, O).

For circuits to be hardware-extractable, S, I, Omust be extractable
types (i.e., they can’t contain function types). In practice, this means
we can use higher-order functions freely whenever we don’t need to
synthesize the circuit into hardware—for example, for the leakage,
observation or simulator circuits.

Example 3.3. ex1 is an extractable circuit that increments its
state each clock tick. It outputs the sum of its input and current
state when the input is non-empty, and outputs its state, otherwise.

Transducers. Circuits describe the behavior of a hardware design
in a single clock tick. The Mealy function 𝑀 transforms a circuit
into a transducer that applies one input per clock tick (from a list of
inputs) to the circuit and produces a corresponding list of outputs.
Transducers therefore represent the actual input/output behavior
of sequential hardware.

Definition 3.4 (Mealy). Let 𝑐 : 𝑆 → 𝐼 → (𝑆,𝑂) be a circuit. The
Mealy function𝑀 is defined as follows, where (𝑠′, 𝑜) = J𝑐 𝑠 𝑖K, : is
list concatenation, and [] is the empty list.

𝑀 : (𝑆 → 𝐼 → (𝑆,𝑂), 𝑆, [𝐼 ]) → [𝑂]

𝑀 (𝑐, 𝑠, 𝑖𝑠) =
{
[] if 𝑖𝑠 = [],
𝑜 : 𝑀 (𝑐, 𝑠′, 𝑖𝑠′) if 𝑖𝑠 = i : 𝑖𝑠′

𝑀 takes a circuit 𝑐 and initial state 𝑠 along with a list of inputs
𝑖𝑠 . It then applies 𝑐 to the first input of 𝑖𝑠 to compute a new state
𝑠′ and output 𝑜 , which it prepends to the list of outputs and then
recursively computes the remaining outputs using the new state 𝑠′
and remaining inputs 𝑖𝑠′.

Example 3.5. Revisiting circuit ex1, let 𝑠 = 0 be an initial state
and 𝑖𝑠 = [Just 1, Nothing, Just 2, Just 3] a list of inputs. Applying
the Mealy function to ex1 with these inputs yields

𝑀 (ex1, 𝑠, 𝑖𝑠) =𝑀 (ex1, 0, [Just 1, Nothing, Just 2, Just 3])
= 1 : 𝑀 (ex1, 1, [Nothing, Just 2, Just 3])
= [1, 1, 4, 6] .

Observational Equivalence.As discussed in § 2, our proof method
requires proving equivalence of functions. In particular, we are
interested in observable function equivalence (rather than syntactic
equivalence). For example, the functions 𝜆 i. i + 0 and 𝜆 i. 0 + i
should be equivalent.

Definition 3.6 (Observational Equivalence). Two closed terms e,
e′ of the same type t are observationally equivalent, written 𝑒 ≡ 𝑒′
when one of the following holds:

(1) t is a base type and JeK = Je′K.

(2) t = t1 → t2 and if for any two closed terms e1, e′1 : t1 with
𝑒1 ≡ 𝑒′1, then e e1 ≡ e′ e′1.

(3) t = {−−−−−→li : ti}, e ⇝∗ {
−−−−−−→
li = ei}, e′ ⇝∗ {

−−−−−−→
li = e′i}, and for all

i, ei ≡ e′i.
(4) t = ⟨−−−−−→li : ti⟩, e ⇝∗ lk e1, e′ ⇝∗ lk e′1, and e1 ≡ e′1.

We also lift observational equivalence to lists of terms: two lists of
equal length are observationally equivalent if their elements are
component-wise observationally equivalent.

Example 3.7. The three functions 𝜆 i. i + 0, 𝜆 i. 0 + i, and 𝜆 i. i
are observationally equivalent because they return the same result
on any input. Similarly, 𝜆 b. b ≡ 𝜆 b. if b then true else false
as each function returns the same result on both true and false.

Definition 3.8 (State Projection Rule). Given circuits 𝑐1 : 𝑆1 →
𝐼 → (𝑆1,𝑂) and 𝑐2 : 𝑆2 → 𝐼 → (𝑆2,𝑂), and a function 𝑝 : 𝑆1 → 𝑆2,
define

𝑐1𝑝 : 𝑆1 → 𝐼 → (𝑆2,𝑂)
𝑐1𝑝 = 𝜆 s1 i. let (s′1, o) = 𝑐1 s1 i in (𝑝 s′1, o),
𝑝𝑐2 : 𝑆1 → 𝐼 → (𝑆2,𝑂)
𝑝𝑐2 = 𝜆 s1 i. 𝑐2 (𝑝 s1) i.

We say that 𝑐1 reduces to 𝑐2, written 𝑐1 ↩→ 𝑐2, if 𝑐1𝑝 ≡ 𝑝𝑐2, and call
𝑝 the state projection function witnessing this reduction.

Example 3.9. In the adder example from § 2, we showed that
add_obs ↩→ leak_sim, i.e., that add_obs reduces to leak_sim using
state projection function proj, by the observational equivalence be-
tween c1p s i = let (s',o) = add_obs s i in (proj s', o), and
pc2 s i = leak_sim (proj s) i. We wanted to show that the trans-
ducers of add_obs and leak_sim are equal, which confirms that
lift leak is a suitable leakage for add under obs. In fact, circuit
reduction implies transducer equivalence:

Theorem 3.10 (Circuit Reduction implies Mealy Eqiva-
lence). Given two circuits 𝑐1 : 𝑆1 → 𝐼 → (𝑆1,𝑂) and 𝑐2 : 𝑆2 → 𝐼 →
(𝑆2,𝑂), if 𝑐1 ↩→ 𝑐2 with state projection function 𝑝 : 𝑆1 → 𝑆2, then for
all initial states 𝑠1 : 𝑆1 there exists an initial state 𝑠2 : 𝑆2 such that for
all input sequences 𝑖𝑠 of type [I], we have𝑀 (𝑐1, 𝑠1, 𝑖𝑠) ≡ 𝑀 (𝑐2, 𝑠2, 𝑖𝑠).

We prove Theorem 3.10 in § A.

3.3 Leakage Description

Sequential Composition. To define leakage descriptions, we first
define sequential circuit composition.

Definition 3.11 (Sequential Composition). Let 𝑐1 : 𝑆1 → 𝐼1 →
(𝑆1,𝑂1) and 𝑐2 : 𝑆2 → 𝑂1 → (𝑆2,𝑂2) be circuits. Their sequential
composition, denoted 𝑐1 ◦ 𝑐2, is defined as

𝑐1 ◦ 𝑐2 : (𝑆1, 𝑆2) → 𝐼1 → ((𝑆1, 𝑆2),𝑂2)
𝑐1 ◦ 𝑐2 ≜ 𝜆 (s1, s2) i1 .

let (s′1, o1) = 𝑐1 s1 i1 in

let (s′2, o2) = 𝑐2 s2 o1 in ((s′1, s′2), o2).

For transducers, sequential composition of circuits becomes func-
tion composition (which follows by induction on the list of inputs):
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Basic Types
𝑟 ∈ Regs registers
𝑣 ∈ Vars variables
𝑖 ∈ Regs ∪ Vars identifiers
𝑛 ∈ {0, 1}∗ values
Syntax
𝑒 := 𝑛 | 𝑖 | ⊖𝑒 | 𝑒1 ⊗ 𝑒2 | {𝑒1, 𝑒2} expressions

| if 𝑒1 th 𝑒2 el 𝑒3 | 𝑒1 [𝑒2 : 𝑒3]
𝑤 := 𝑣 = 𝑒 wires
𝑊 := {𝑤1,𝑤2, . . .} wire sets
𝑎 := 𝑟 ← 𝑣 assignments
𝐴 := {𝑎1, 𝑎2, . . .} assignments sets
𝐼 := {𝑣1, 𝑣2, . . .} inputs
𝑂 := {𝑣1, 𝑣2, . . .} outputs
𝐶 := 𝐼 :𝑊 : 𝐴 : 𝑂 circuits

Figure 6: 𝜇-Verilog syntax.

Lemma 3.12. Given two circuits 𝑐1 : 𝑆1 → 𝐼1 → (𝑆1,𝑂1) and
𝑐2 : 𝑆2 → 𝑂1 → (𝑆2,𝑂2) be circuits, states 𝑠1 : 𝑆1 and 𝑠2 : 𝑆2, and an
input sequence 𝑖𝑠 : [𝐼 ], we have

𝑀 (𝑐1 ◦ 𝑐2, (𝑠1, 𝑠2), 𝑖𝑠) =𝑀 (𝑐2, 𝑠2, 𝑀 (𝑐1, 𝑠1, 𝑖𝑠)).

Leakage.We now have the machinery needed to define leakage:

Definition 3.13 (Leakage). Let 𝑐 : 𝑆 → 𝐼 → (𝑆,𝑂) be a circuit
and 𝑜 : 𝑆𝑜 → 𝑂 → (𝑆𝑜 ,𝑂𝑜 ) an observation. A circuit 𝑙 : 𝑆𝑙 → 𝐼 →
(𝑆𝑙 ,𝑂𝑙 ) is a leakage description for 𝑐 under 𝑜 if there exists a circuit
𝑠 : 𝑆𝑠 → 𝑂𝑙 → (𝑆𝑠 ,𝑂𝑜 ) such that 𝑐 ◦ 𝑜 ↩→ 𝑙 ◦ 𝑠 .

Example 3.14. Revisiting the adder (§ 2), circuit lift leak is a
leakage description for add under lift obs since there is a simulator
sim such that add ◦ (lift obs) ↩→ (lift leak) ◦ sim.

Next, we adapt contract equivalence [41]—a prior notion of
leakage—to our setting and show it’s implied by our definition.

Definition 3.15 (Contract Equivalence). Let 𝑐 : 𝑆 → 𝐼 → (𝑆,𝑂)
be a circuit and 𝑜 : 𝑆𝑜 → 𝑂 → (𝑆𝑜 ,𝑂𝑜 ) its observation. A circuit
𝑙 : 𝑆𝑙 → 𝐼 → (𝑆𝑙 ,𝑂𝑙 ) is called a contract for 𝑐 with respect to
the observation 𝑜 if, for all states 𝑠𝑙 : 𝑆𝑙 and all input sequences
𝑖𝑠, 𝑖𝑠′ : [𝐼 ], whenever 𝑀 (𝑙, 𝑠𝑙 , 𝑖𝑠) = 𝑀 (𝑙, 𝑠𝑙 , 𝑖𝑠′), then for all states
𝑠 : 𝑆 and 𝑠𝑜 : 𝑆𝑜 , we have𝑀 (𝑐 ◦ 𝑜, (𝑠, 𝑠𝑜 ), 𝑖𝑠) =𝑀 (𝑐 ◦ 𝑜, (𝑠, 𝑠𝑜 ), 𝑖𝑠′).

Theorem 3.16 (Leakage implies Contract Eqivalence). Let
𝑐 : 𝑆 → 𝐼 → (𝑆,𝑂) be a circuit and 𝑜 : 𝑆𝑜 → 𝑂 → (𝑆𝑜 ,𝑂𝑜 ) be its
observation. If circuit 𝑙 : 𝑆𝑙 → 𝐼 → (𝑆𝑙 ,𝑂𝑙 ) is a leakage for 𝑐 with
respect to observation 𝑜 , then 𝑙 is also a contract.

Theorem 3.16 is proved in § A.

3.4 From Circuits to Hardware

If its types are extractable, we can compile a circuit into a hardware
design that matches the behavior of its associated transducer. We
show this process with 𝜇-Verilog, a simplified version of Verilog.1

𝜇-Verilog Syntax. Figure 6 shows 𝜇-Verilog’s syntax, based on [41].
𝜇-Verilog circuits consist of a set of input variables 𝐼 , a set of assign-
ments𝐴, and a set of output wires𝑂 . Input variables are assigned an
1Verilog is one of the main hardware description languages; the other, VHDL, is similar.

external input value at the start of each clock cycle. A wire assign-
ment of the form 𝑣 = 𝑒 immediately updates the value of variable 𝑣 .
An assignment of the form 𝑟 ← 𝑣 updates the value of register 𝑟 in
the next clock cycle. We assume that assignments are disjoint—no
two assignments update the same register or variable. Expressions
are formed from bitvectors, register identifiers, unary and binary
operations (⊖𝑒 and 𝑒1 ⊗ 𝑒2), conditionals, the bit-selection operator
𝑒1 [𝑒2 : 𝑒3] (which selects a subset of bits from a value), and the wire
concatenation operator {𝑒1, 𝑒2} (which forms a new wire consisting
of both 𝑒1 and 𝑒2). Output wires specify the circuit’s outputs.
𝜇-Verilog Semantics. § B describes the semantics. In short, wire as-
signments take immediate effect, while register assignments occur
concurrently, synchronized by the clock. Circuits first assign in-
puts to input wires, evaluate all wire expressions, and compute the
outputs. Finally, they update registers for the next clock cycle. The
circuit semantics L𝐶M(𝜇, 𝑖) = (𝜇′, 𝑜) captures this behavior: given a
valuation 𝜇 that maps registers to values and a tuple of inputs 𝑖 , it
computes an output valuation 𝜇′ and a tuple of outputs 𝑜 . Variable
values don’t need to be recorded, as they aren’t preserved across
cycles. The transducer semantics𝑀 (𝐶, 𝜇, 𝑖𝑠) is similarly defined.

Example 3.17. Consider the following 𝜇-Verilog circuit

𝐶ex2 = {𝑖} :𝑊 : {𝑠 ← 𝑠′} : {𝑜},
where𝑊 = {𝑠′ = 𝑠 + 1, 𝑜 = if 𝑖 [32 : 32] th 𝑠 + 𝑖 [32 : 1] el 𝑠},
size(𝑖) = 33, and size(𝑠) = size(𝑜) = 32. 𝐶ex2 increments register 𝑠
in each clock cycle. It then assigns to output register 𝑜 : if 𝑖’s most
significant bit is 1, 𝑜 is assigned 𝑠 + 𝑖 [32 : 1] (i.,e., the sum of 𝑠 and
𝑖’s remaining 32 bits), otherwise it’s assigned 𝑠 .

From Circuits to 𝜇-Verilog. This section sketches the translation
from the core language (Figure 4) to Verilog; full translations rules
appear in § C. A term 𝜆 s i. e of type 𝑆 → 𝐼 → (𝑆,𝑂) (where types
𝑆 , 𝐼 , and 𝑂 are extractable) is translated as follows, where 𝑣𝑖 is an
input variable, 𝑣𝑜 an output variable, 𝑠 is a state register, and 𝑣e is
the result of translating e.

{𝑣𝑖 } : {𝑣𝑜 = field (𝑣e, 2), 𝑠′ = field (𝑣e, 1), . . .} : {𝑠 ← 𝑠′} : {𝑣𝑜 }
The field extraction function field (𝑣, 𝑙) accesses the field 𝑙 of a record
encoded into variable 𝑣 by appropriately slicing the variable. For
example, for the record type {a : Word8, b : Word4}, field (𝑣, a) =
𝑣 [0 : 8].

The translation creates a variable 𝑣e′ for each sub-term e′ of e. It
encodes terms of record types by creating a variable with enough
bits to fit all components of the record and using the bit-slice oper-
ator to extract individual component (via field). To encode terms
of variant types, the translation creates a variable with enough
bits to encode all possible data-types for the variant, as well as a
label indicating which choice the term represents. It encodes case
expressions of the form case e of

−−−−−−−−−→
lixi → ei into conditional ex-

pressions, using bit-slicing to assign the relevant parts of expression
e to variable xi for each case.

Example 3.18. Applying the translation to the circuit ex1 from
Example 3.1 yields the 𝜇−Verilog circuit 𝐶ex2 from Example 3.17.
The optional type Maybe Word32 is encoded into a 33-bit wire by
conjoining a single bit to encode the choice between labels Nothing
and Just, with 32 bits encoding the value of type Word32.
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1 fe :: State -> (Word16 , Maybe Word8) -> (State ,())

2 fe state (rawInstr , jmp) =

3 let curPC = pc state in

4 let instr = decode rawInstr in

5 case jmp of

6 Just newPC -> (state {exInstr = Add 0,

7 exPC = curPC ,

8 pc = newPC}, ())

9 Nothing -> (state {exInstr = instr ,

10 exPC = curPC ,

11 pc = curPC + 1}, ())

Listing 4: Fetch Stage.

4 Case Study: Pipelined Processor

This section shows how to construct a simulation based-leakage
proof for a simple three stage pipelined processor with a single
register. While we use Haskell syntax for readability, the processor
is fully expressible in our core language.

4.1 The Processor

Instruction Set.We encode instructions as the variant type below:
1 data Instr = Add Word8 | Clr

2 | Out | Jmp Word8 | Beq Word8

Add adds a Word8 value to the register, Clr resets it 0, Out outputs its
current value, Jmp jumps to a Word8 address, and Beq branches if the
register is 0, adding its Word8 offset to the current program counter.
Pipeline Stages. Each instruction passes through three processor
stages. Fetch decodes a raw Word16 instruction into an Instr. Execute
runs the instruction, producing a register update (the writeback),
an optional output value, and the next program counter. Writeback
applies the register update and returns any outputs.
Toplevel Circuit and State. We encode the processor as a circuit
proc (Listing 7) that takes a raw Word16 instruction, and returns a
pair: an optional Maybe Word32 output and the new Word8 program
counter. The processor’s state is encoded with the record type

1 data State = State

2 {pc :: Word8 , reg :: Word32 ,

3 exInstr :: Instr , exPC :: Word8 ,

4 wbOut :: (Maybe Word32 , Maybe Word32)}

Here, pc is the current program counter and reg holds the register
value. The other fields will be explained as we go.
Fetch Stage. The fetch stage (Listing 4) decodes the raw instruction
and updates the program counter based on the previous instruc-
tion’s execution. It stores the decoded instruction in the state’s
exInstr field and the current program counter (needed when ex-
ecuting a Beq instruction) in exPC; these become state inputs to
execute stage in the next cycle. If a jump occured in the previous
cycle (i.e., jmp is a Just-value), the instruction is discarded and is
replaced with a no-op (Add 0). Otherwise, the program counter is
incremented by 1.
Execute Stage. The execute stage (Listing 5) executes the instruc-
tion fetched last cycle, storing the result—a register update and
the computed output—as wbOut. In the next cycle, the writeback

1 ex :: State -> () -> (State , Maybe Word8)

2 ex state _ =

3 let curReg = reg state in

4 case exInstr state of

5 Add imm -> let newReg = curReg + imm in

6 (state {wbOut = (Just newReg , Nothing)},

7 Nothing)

8 Beq off ->

9 if curReg == 0

10 then let newPC = (exPC state) + off in

11 (state {wbOut = (Nothing , Nothing)},

12 Just newPC)

13 else (state {wbOut = (Nothing , Nothing)},

14 Nothing)

15 ...

Listing 5: Execute Stage.

1 wb :: State -> () -> (State , Maybe Word32)

2 wb state _ =

3 let (wb, out) = wbOut state in

4 case wb of

5 Just newReg -> (state {reg = newReg}, out)

6 Nothing -> (state , out)

Listing 6: Writeback Stage.

1 proc :: State -> Word16

2 -> (State , (Maybe Word32 , Word8))

3 proc state rawInstr =

4 let (state ', out) = wb state () in

5 let (state '', jmp) = ex state ' () in

6 let (state ''', _) = fe state '' (rawInstr ,jmp) in

7 (state ''', (out , pc state '''))

Listing 7: The Pipelined Processor.

stage will update the register and perform the processor’s output
according to the stored wbOut values. For an Add imm instruction, we
add imm to the register value and store the update in wbOut. For Out,
we store the register value in wbOut, to be output by the writeback
stage. For Beq off, if the current register value is 0, we jump by
outputing Just newPC on a wire connected to the fetch stage.

Writeback Stage. The writeback stage (Listing 6) updates the
register value in the processor state and returns the output.

Pipelining. In one clock cycle, proc executes all three pipeline
stages concurrently, processing three instructions in parallel: it
fetches the instruction at the current program counter, executes the
instruction fetched last cycle, and performs the writeback for the
instruction fetched two cycles ago. The pipeline executes stages
in reverse order—writeback, then execute, then fetch—to prevent
overwriting stage state inputs before they are used.
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1 leak :: LState -> Word16 -> (LState , LInstr)

2 leak state rawInstr =

3 let curReg = reg state in

4 let instr = decode rawInstr in

5 case exInstr state of

6 Add imm -> let newReg = curReg + imm in

7 (state {reg = newReg ,

8 exInstr = instr}, LOther)

9 Beq off ->

10 if curReg == 0

11 then (state {exInstr = Add 0}, LBeq off)

12 else (state {exInstr = instr}, LOther)

13 ...

Listing 8: Leakage.

4.2 Observation, Leakage, and Simulator

Observation. The observation function discards the processor
output, only keeping the program counter:

1 obs :: (Maybe Word32 , Word8) -> Word8

2 obs (_, pc) = pc

This observation encodes an attacker that can observe the control
flow of the program and, therefore, its timing.
Leakage. Since the attacker only sees the program counter, we only
need to simulate the control flow. To do so, for Jmpwe need to know
the target address, and for Beq the offset. For all other instructions,
the program counter increases by 1. This suggests the following
leakage (i.e., input for the simulator):

1 data LInstr = LJmp Word8 | LBeq Word8 | LOther

The leakage circuit (Listing 8) must produce a leakage of type
LInstr from raw Word16 instructions. To determine when to branch,
leak must track the register value. Like the processor, it decodes
and stores instructions for subsequent execution—this suggests the
following state for leak:

1 data LState =

2 LState {reg :: Word32 , exInstr :: Instr}

For Add imm, we add imm to the register value, update the register,
and decode the next instruction, storing it in exInstr for the next
cycle. For Beq off, if the register value is 0, we jump: we discard the
raw instruction, schedule a no-op (Add 0) for the next cycle, and—to
allow the simulator to compute the address of the next instruction
to fetch—record that a jump has occurred by leaking the offset as
LBeq off.
Simulator. The simulator circuit must take LInstrs as inputs and
produce the Word8 program counter. The simulator state is the
remainder of the original processor state (except for wbOut):

1 data SState = SState {pc :: Word8 , exPC :: Word8}

Listing 9 shows the code. On LJmp addr instructions, the next pro-
gram counter is the specified address. For LBeq off, it’s the original
instruction address exPC plus the offset. Finally, on LOther, it’s just
the current counter incremented by 1.
State Projection. To show that the simulator matches the leakage,
we need to prove that the circuit proc ◦ (lift obs) reduces to

1 sim :: SState -> LInstr -> (SState , Word8)

2 sim state leakInstr =

3 let curPC = pc state in

4 case leakInstr of

5 LNonJmp ->

6 (state {exPC = curPC , pc = curPC + 1},

7 curPC + 1)

8 LJmp addr ->

9 (state {exPC = curPC , pc = addr}, addr)

10 LBeq off ->

11 let newPC = (exPC state) + off in

12 (state {exPC = curPC , pc = newPC}, newPC)

Listing 9: Simulator.

1 proj : State -> (LState , SState)

2 proj (State pc reg exInstr exPC wbOut) =

3 let (wb, _) = wbOut in

4 case wb of

5 Just newReg ->

6 (LState newReg exInstr , SState pc exPC)

7 Nothing ->

8 (LState reg exInstr , SState pc exPC)

Listing 10: State Projection.

the circuit leak ◦ sim. To do so, we construct the state projection
function shown in Listing 10. The state projection function divides
the processor state into leakage and simulator states. The exception
is wbOut, which lacks an analogue in the leakage and simulator
states. Instead, we discard the output part of wbOut and perform an
in-flight register update according to the writeback part of wbOut.

5 Implementation

Pantomime. Pantomime is a full-path symbolic execution engine
for GHC Core—the internal language of GHC (the Glasgow Haskell
Compiler), which is based on System FC.2 Implemented as a GHC
Core plugin, Pantomime verifies that a circuit’s leakage specifica-
tion is correct. To use it, the user provides the leakage specification
as an annotation, like the one shown below.

1 {-# ANN circuit Pantomime

2 { observation = 'obs , leakage = 'leak ,

3 simulator = 'sim , projection = 'proj } #-}

4 circuit :: s -> i -> (s, o)

5 circuit = ...

Given a specification, Pantomime generates constraints that entail
its correctness. After constraint generation, Pantomime queries an
SMT solver to check validity of the constraints. In case of a violation,
Pantomime returns a pair of diverging observations along with
their corresponding inputs. As Pantomime symbolically executes
GHC Core, it supports all of System FC. This allows hardware de-
signs in Pantomime (and their corresponding leakage descriptions
and simulators) to use the full range of functional programming
techniques supported by Haskell—including monads, typeclasses
2System FC [35] extends System F with non-syntactic type equality support.
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and GADTs—provided they can be synthesized to hardware. Pan-
tomime is written in approximately 7600 lines of Haskell code.
Grisette.We implemented Pantomime using the Grisette [26] sym-
bolic execution library. Grisette provides an Ordered Guards repre-
sentation, which allows for efficient merging of symbolic values.
Additionally, Grisette folds constants and deduplicates expressions
within terms where possible, further reducing constraint sizes.

In Grisette, a value of type Maybe Word is represented as

1 SymMaybeWord { tag = "tag" :: SymInt64

2 , word = "word" :: SymWord64 }

where "tag" and "word" are symbolic constants.3 Since Maybe Word64

has only two variants (Just or Nothing), SymMaybeWord’s tag field
needs to be restricted to be within range; Grisette allows us to
encode this assumption directly in the expression:4

1 tag = If !(0 <= "tag" && "tag" < 2)

2 (Left Invalid) (Right "tag")

Any value outside of the range of variants is Invalid and should not
be considered by the constraint solver. More generally, a symbolic
expression is represented by a chain of if-then-else expressions.
Merging Expressions. Instead of exposing the primitive construc-
tor If directly, Grisette wraps symbolic branching within the mrgIte
function. Directly using If hides opportunities for optimizations
due to possible Invalid branches. We illustrate this in the following
example, where we branch on conditional condBwith both branches
x and y containing Invalid in their body.

1 x = If condX (Left Invalid) (Right "x")

2 y = If condY (Left Invalid) (Right "y")

3

4 mrgIte condB x y

5 > If (condX || condY)

6 (Left Invalid)

7 (Right (If condB "x" "y"))

Notice that merging opens up the possibility to simplify condX ||

condY. In comparison, this reduction is non-obvious when using
the naive branch operation If x y.
Constraint Generation. The constraint generation algorithm par-
allels concrete evaluation in GHC Core. In fact, Pantomime doubles
as an interpreter when given constant inputs as Grisette will per-
form constant folding on expressions. The symbolic evaluator takes
an environment and a Core expression as inputs and converts it
into a symbolic expression. For example, a Core variable expression
triggers a lookup in the environment, and a Core lambda converts
into a function that receives a symbolic argument.

Pantomime follows Haskell’s evaluation semantics. It supports
type and coercion reductions and tracks typecasts to ensure correct
and well-typed reductions. Abstract data types are implemented
as records containing a tag—that symbolically represents the data
constructor—along with symbolic versions of the fields for every
possible data constructor. Pantomime supports abstract data types
generically, such that it can accepts any new user definitions as is.

3"tag" and "word" are not strings and are indeed of type SymInt64 and
SymWord64; the OverloadedStrings GHC extension enables us to represent these
symbolic expressions as strings.
4If constructs symbolic if-then-else expressions.

The symbolic valuation produced by Pantomime follows lazy
semantics—expression constraints appear in the resulting expres-
sion only if the expression is used. This keeps constraint sizes small
by including only what is strictly necessary.
C𝜆aSH Support.We implemented AIMCore, in C𝜆aSH [7], a hard-
ware description language embedded in Haskell. C𝜆aSH exposes
hardware primitives, such as the sized bit vector type BitVec n

and operations on them (e.g., bit vector concatenation), which it
can compile to synthesisable HDLs, like Verilog. In Pantomime,
we implemented interpretations for these hardware primitives and
operations, enabling verification of specifications for C𝜆aSH cir-
cuits. For example, we encode BitVec n as the appropriately sized
bit vector in the corresponding first-order theory. This requires
Pantomime to perform type-level reductions to statically determine
vector bit-sizes. We take a similar approach for primitive operations.
Function Equivalence. Given an annotation, Pantomime con-
structs two circuits whose equivalence determines the validity of
the leakage specification, illuistrated below.

1 real s i =

2 let (s', o) = circuit ◦ obs $ s i in

3 (projection s', o)

4

5 synth s i = leakage ◦ simulator $ (projection s) i

The first circuit, real, composes circuitwith observation, and then
aplies projection to mask the output state. The second circuit, synth
masks the input state with projection before passing it to leakage

composed with simulator. The leakage specification is valid iff real

s i == synth s i for all s, i—i.e., there is no pair of input state
for which the circuits diverge.

6 Evaluation

We evaluate Pantomime by asking the following research questions.
RQ1: Can we use Pantomime to write/verify a RISC-V processor?
RQ2:What’s the proof effort of verification with Pantomime?
RQ3: How does AIMCore compare to other verified processors?
RQ4: How do Pantomime’s leakage descriptions and guarantees
compare to other methods?
RQ5: How long does Pantomime take to verify correctness?
RQ1: Implementing AIMCore and its Proof.We answer RQ1
in the affirmative by reporting on implementing and verifying AIM-
Core using Pantomime. AIMCore is a 5-stage in-order pipelined
processor that implements the RISC-V V2.1 RV32I Base Integer In-
struction Set [42].5 AIMCore consists of around 800 lines of Haskell
and extracts to around 2400 lines of Verilog. Its design builds on the
simpler processor in § 4, and consists of five pipeline stages. The
core receives values frommemory and the register file as inputs and
produces memory and register file accesses as outputs. Programs
are stored alongside values in memory. The core forwards values
from the wb and mem stages to the exe stage (see proc below); pipeline
stalls arise only from memory operations (load dependencies or a
memory access blocking instruction fetch) and branches.
Processor in Haskell. Since the core is written in Haskell, it can
make use of expressive monad abstractions and elide explicit pass-
ing of inputs, outputs, and state; the complete processor pipeline
5Excluding the ecall and ebreak instructions.
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is specified simply as a sequence of its individual stages, where
runCPUM extracts the function payload from the CPUM monad6 that
the pipeline is written in.

1 proc :: State -> Input -> (State , Output)

2 proc = runCPUM (wb >> mem >> exe >> de >> fetch)

Since proc consists only of combinatorial logic, it can be directly
compiled into an HDL using a tool like C𝜆aSH and then synthesized.
Observation. We model an attacker that can observe the program
counter, revealing control flow and timing. In a given cycle the
processor may access a memory value instead of fetching an in-
struction; our attacker observation model reflects this by exposing
the program counter only during instruction fetches:

1 obs :: Output -> Maybe Address

Leakage. As in § 4, we write a leakage circuit that takes as input
the processor’s input (a memory read and two register file reads)
and constructs the leakage:

1 leak :: LState -> Input -> (LState , Leak)

Since the register file andmemory are external to the core, the core’s
pipeline structure affects when inputs are requested: for instance,
de must request register operands one cycle before exe needs them.
Similarly, the result of a load request issued by mem appears in wb

in the following cycle. Since jump and branch addresses (and, by
extension, the program counter) can result from arbitrary compu-
tation, leak must faithfully replicate the processor’s architectural
state, which requires matching the timing of requests to the register
file and memory. Rather than distilling the core’s timing behavior
into separate logic, we capture it implicitly by structurally matching
leak to proc—like in our case-study. leak therefore has a 5-stage
pipeline structure [11].
ISA Interpreter. To compute addresses, leak calls a black-box
ISA interpreter that implements the ISA spec. As such, leak must
only explicitly replicate the timing behavior of proc—all actual
computation is delegated to the black-box interpreter, which is
resuable across different leakage models. As a result, leak is easy
to write for hardware designers: it looks just like proc, but with
all computation abstracted away—retaining only the core’s input
timing, stalling, and value-forwarding behavior.
Leakage Datatype. The actual leakage that leak computes is a
tuple defined as:

1 type Leak = (LInstr , (Maybe RegId , Maybe RegId)

2 , Maybe Address)

It consists of three components: (1) the leakage instruction LInstr:
1 data LInstr = LJmp | LLoad RegId | LStore | LOther

(2) (Maybe RegId, Maybe RegId), a pair of optional registers that
the core instruction corresponding to the given leakage instruction
may depend on, and (3) Maybe Address, the address of a jump
or branch. LJmp has no Address payload beacause leak does not
yet know the jump target when it needs to issue the leakage
instruction. Instead, we leak jump addresses later, when they
become available, using the third component of Leak. This approach
also eliminates the need for a separate instruction for conditional
branches: leak outputs jump target Nothing for conditional
6Which is just a newtype wrapper around the RWS monad from the mtl package.

branches that end up not being taken. The simulator uses an
instruction’s register dependencies to stall when the core stalls
(e.g., for load dependencies). Instructions LLoad and LStore are
needed to determine stalls. LLoad includes its destination register
to determine load dependencies, and LStore has no payload. All
other instructions act as a no-op, represented with LOther.
Simulator. The simulator sim takes as input the leakage Leak from
leak and outputs the program counter:

1 sim :: SState -> Leak -> (SState , Maybe Address)

Like leak, sim focuses on timing: it must know when leak sends
a jump address and when the core outputs the program counter
(instead of the address for a memory access). So, sim too structurally
mirrors proc: it’s a 5-stage pipeline. sim’s pipeline is simple—it
models only the core’s stalling behavior (which also determines
when leak sends a jump address).
RQ2: Proof Effort. Table 1 shows proof statistics for AIMCore
and processors verified in LeaVe [41]. Pantomime proofs involve
writing a simulator and state projection function, totalling around
200 lines of Haskell for AIMCore.7 LeaVe proofs are invariant-
based, consisting of assertions about the processor’s state space
and relations between variables the solver can’t automatically find.

While writing 200 lines of simulator code might superficially
seem like more work than writing a modest number of invaraints,
recall that in Pantomime the simulator—and hence leakage proof—
is a simplified version of the core and is therefore easy to write.
Moreover, simulators are just programs: they can be interactively
executed and benefit from a broad ecosystem of programming aids—
from static type checking to property-based testing frameworks like
QuickCheck [14] (which we used extensively during development).
Debugging incorrect or missing invariants, however, is notoriously
challenging and requires expertise beyond hardware design.
RQ3: How does AIMCore compare to other verified proces-

sors?. Table 1 shows a comparison between AIMCore and the
processors verified in LeaVe. AIMCore is similar in complexity
to other verified cores. While the other cores implement 2-, and
3-stage pipelines, AIMCore implements a more complex 5-stage
pipeline. The largest processor in LeaVe, Ibex, implements further
instructions outside the integer base-set, e.g., instructions for ma-
nipulating CSR registers, multiplication and division, and support
for compressed instructions. We note that these extensions (except
for multiplication and division), have been disabled during verifica-
tion. Ibex and AIMCore are comparable in size when measured in
lines of code.
RQ4: Leakage guarantees vs. other verified cores. Our leak-
age description for AIMCore leaks the class of instruction, the
register dependencies, and the address of branch targets. As such,
our leakage description verifies that both the constant-time disci-
pline, as well as branch balancing (as long as it respects register
dependencies) are effective against timing side-channels on this
architecture. Table 1 summarizes the leakage descriptions verified
by LeaVe. Notably, the leakage descriptions computed by LeaVe are
less precise than that of Pantomime. For instance, every processor
in Table 1 leaks the program counter value along with the executed

7The leakage circuit (which isn’t part of the proof) is about 300 lines of Haskell and
relies on an ISA interpreter that’s a further 70 lines.
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Table 1: AIMCore compared with the processors verified in LeaVe [41].

AIMCore Processors verified by LeaVe [41]

(Our work) Sodor DarkRISCV-3 Ibex-small

Architecture
ISA RV32I RV32I RV32E RV32IMC
Pipeline stages 5 2 3 2
Code size (loc) 800 Haskell / 2400 Verilog 400 Chisel / 2000 Verilog 620 Verilog 2500 Verilog
Forwarding ✓ ✗ ✗ ✓

Security Properties & Proof

Leakage Inst types, Reg deps,
Jump Addr

PC, Inst,
Br taken PC, Inst PC, Inst, Br taken,

Jump Addr, Div Op
Proof effort 180 loc simulator; 30 loc projection 16 manual invariants 13 manual invariants 59 manual invariants
Verification Time 18.4 seconds 97.8 min 11.1 min 118.7 min
Unconditional proof ✓ ✗ ✗ ✗

instruction; in our framework, this would result in a trivial simula-
tor that directly outputs the leaked program counter. We conjecture
that invariants restrict the class of leakages for which proofs are
tractible. Invariant-based approaches also assume an immutable
program, disallowing processors from modifying their own code
(as done in e.g., boot loaders and JIT compilers); Pantomime does
not have this restriction. Pantomime also enables us to group in-
structions that have the same leakage behavior using the LOther

instruction. Finally, we note that LeaVe’s proofs are conditional on
functional correctness of the processor pipeline, which itself was
not formally proven. By contrast, our proofs are unconditional.
RQ5: Verification Time. Table 1 reports the verification time
for AIMCore using Pantomime, alongside results for processors
verified by LeaVe. LeaVe doesn’t report on the hardware used for
benchmarking; for AIMCore, we benchmarked using a consumer-
grade AMD Ryzen 7 9700X CPU. While the verification results are
not directly comparable as they concern different designs, we can
see that Pantomime’s verification time for AIMCore is two orders
of magnitude lower than LeaVe’s verification time for Ibex-small.
We attribute this to the fact that LeaVe has to rely on expensive
solvers to compute inductive invariants, while Pantomime only has
to perform one-step equivalence checking between implementation
and simulator. As a result, Pantomime allows users to check proofs
interactively—as they write the core—simplifying development.

7 Related Work

Verifying Security Properties of RTL Designs. UPEC [18] de-
tects transient execution vulnerabilities in RTL designs (or proves
their absence), but is restricted to fixed properties, while Pantomime
can express arbitrary leakage properties via (stateful) observation
functions and leakages. ConjunCT [16] and UPEC-DIT [15] identify
subsets of a processor’s instruction set that are data-oblivious in the
sense that their operands do not affect the timing of the computa-
tion. H-Houdini [17] checks for the same property, but scales better
by proposing a new invariant synthesis approach that exploits local-
ity, e.g., due to pipelining. While these techniques scale well, they
offer limited guarantees: since branch instructions trivially affect
timing, these instruction are not data-oblivious. Hence, these tech-
niques cannot guarantee safety of code involving branches, as is
used, e.g., in constant-time code in cryptographic libraries. SecVer-
ilog [47] extends Verilog with a type system to statically check
timing-sensitive information flow. SpecVerilog [46] builds upon

SecVerilog’s type system to express information-flow safety under
speculative execution. Unlike Pantomime, they are too restrictive
to capture software defenses like the constant-time discipline.

Verifying Leakage Descriptions. Iodine [37] proves secret-
independent timing in hardware, given usage assumptions ex-
pressed on inputs and internal wires. Xenon [38] synthesizes such
usage assumptions semi-automatically. While their ability to rep-
resent arbitrary assumptions makes Iodine and Xenon expressive,
they can only do so on internal wires, making translation to assump-
tions on software difficult. By contrast, Pantomime can express
assumptions directly on the instruction stream of the program,
as described in § 4 and 6. LeaVe [41] verifies leakage contracts
(Definition 3.15) of RTL designs. However, it relies on expensive
solvers, and requires hand-written invariants to carry out proofs.
By contrast, Pantomime uses simulation-based proofs written in
the same language as the processor, making them easier to write
and fast to check. Contract Shadow Logic [36] follows a similar
approach to LeaVe, but uses exhaustive state space exploration via
model checking instead of inductive invariants to validate contracts,
which limits its scalability. Both Contract Shadow Logic and LeaVe
assume functional correctness of the design against an ISA-level
specification to prove contract satisfaction. Pantomime makes no
such assumption and therefore delivers unconditional proofs.

Synthesizing Leakage Descriptions. [29] synthesizes leakage
contracts using a user-supplied lists of "contract atoms," which rep-
resent potential leakage sources, along with a set of test cases. How-
ever, [29] does not prove the correctness of the leakage contracts it
synthesizes. RTL2M𝜇PATH [20] uses model checking to enumerate
microarchitectural paths of an instruction through the processor
and records which instructions may influence the path choice. It re-
quires designers to annotate with 𝜇𝐹𝑆𝑀s—microarchitectural finite
state machines that govern updates of the processor state and relies
on exhaustive state space exploration which limits scalability. Their
notion of leakage as dependencies between instructions makes it
hard to translate assumptions back to software, limiting generality.

Simulation-based Proofs in Crypto. In designing our approach,
we were inspired by simulation-based proofs in cryptography [24]
(as used e.g., in Universal Composability [10]). However, beyond the
common idea of using simulators, the two proof methods diverge
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significantly. In cryptography, the aim is often to show that a (poten-
tially active) adversary—with bounded computational resources—
can learn nothing of interest about the secrets processed in a cryp-
tographic protocol. By contrast, we use simulators to precisely
characterize the side-channel leakage of a processors against a pas-
sive attacker—one that can observe side-channels (e.g., timing), but
cannot actively influence the computation.

8 Conclusion

This paper introduces simulation-based leakage proofs, an approach
to leakage verification that integrates directly into the hardware
design process, enabling rapid, interactive verification with un-
conditional leakage guarantees. We realized this approach in the
Pantomime verification tool and used it to verify the AIMCore
RISC-V CPU. Unlike previous work, where proofs depend on the
functional correctness of a CPU against an ISA spec, our proofs are
unconditional.
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A Proofs for Section 3

Proof of Theorem 3.10. Let 𝑠 be a state of type 𝑆 and is be an
input sequence of 𝐼s. We proceed by induction on is.

• Base Case: is = []. By definition.
• Induction hypothesis: 𝑀 (𝑐1, 𝑠, is′) =𝑀 (𝑐2, 𝑝 𝑠, is′).

• Inductive Step: is = 𝑖 : is′. We show the equivalence
between𝑀 (𝑐1, 𝑠, is) and𝑀 (𝑐2, 𝑝 𝑠, is) as follows:

𝑀 (𝑐1, 𝑠, is)

≡(1) 𝑜 : 𝑀 (𝑐1, 𝑠′, is′)

≡(2) 𝑜 : 𝑀 (𝑐2, 𝑝 𝑠′, is′)

≡(3) 𝑜 : 𝑀 (𝑐2, J𝑐1𝑝 𝑠 𝑖K .1, is′)

≡(4) 𝑜 : 𝑀 (𝑐2, J𝑝𝑐2 𝑠 𝑖K .1, is′)

≡(5) 𝑜 : 𝑀 (𝑐2, (𝑐2 (𝑝 𝑠) 𝑖) .1, is′)

≡(6) 𝑀 (𝑐2, 𝑝 𝑠, is) .
Step (1) follows by definition of𝑀 , where (𝑠′, 𝑜) = J𝑐1 𝑠 𝑖K; step (2)
from our induction hypothesis; and step (3) from the definition of
𝑐1𝑝 in the reduction proof, where 1 is the label for the first element
of a tuple. Step (4) follows from the observational equivalence
between 𝑐1𝑝 and 𝑝𝑐2, which we get from the assumption 𝑐1 ↩→ 𝑐2.
Step (5) follows from the definition of 𝑝𝑐2; and step (6) from the
definition of𝑀 . □

Proof of Theorem 3.16. Let sim : 𝑆𝑠 → 𝑂𝑙 → (𝑆𝑠 ,𝑂𝑜 ) be
the simulator, with respect to which we have the mealy reduction
𝑐◦𝑜 ↩→ leak◦sim. Given an initial state (𝑠, 𝑠𝑜 ) : (𝑆,𝑂) of the circuit
𝑐 ◦ 𝑜 , from Theorem 3.10 we get an initial state (𝑠𝑙 , 𝑠𝑠 ) : (𝑆𝑙 , 𝑆𝑠 ) of
the circuit leak ◦ sim such that

𝑀 (𝑐 ◦ 𝑜, (𝑠, 𝑠𝑜 ), 𝑖𝑠) =𝑀 (leak ◦ sim, (𝑠𝑙 , 𝑠𝑠 ), 𝑖𝑠) (★)

for all input sequences is : [𝐼 ]. Fix input sequences is, is’ : [𝐼 ].
Then we have

𝑀 (𝑐 ◦ 𝑜, (𝑠, 𝑠𝑜 ), is)

=(1) 𝑀 (leak ◦ sim, (𝑠𝑙 , 𝑠𝑠 ), is)

=(2) 𝑀 (sim, 𝑠𝑠 , 𝑀 (leak, 𝑠𝑙 , is))

=(3) 𝑀 (sim, 𝑠𝑠 , 𝑀 (leak, 𝑠𝑙 , is’))

=(4) 𝑀 (leak ◦ sim, (𝑠𝑙 , 𝑠𝑠 ), is’)

=(5) 𝑀 (𝑐 ◦ 𝑜, (𝑠, 𝑠𝑜 ), is’)
Steps (1) and (5) follow from (★), steps (2) and (4) from Lemma 3.12,
and step (3) from the assumption. □

B Verilog Semantics

We now sketch the semantics of 𝜇-Verilog. For a more thorough
description of Verilog’s semantics, see [19, 37, 41, 47]. The circuit
state consists of a pair (𝜌, 𝜇), where 𝜌 maps variables to values,
and 𝜇 maps registers to values. Values are fixed length bit-strings,
where we write size(𝑣) to denote the number of bits in 𝑣 . At the
beginning of each clock cycle, we update 𝜌 with the valuation of
the inputs in the current cycle. That is, if the value for input 𝑖 is
value 𝑏 in the current cycle, we set 𝜌 (𝑖) = 𝑏. Next, we execute wire
assignments updating 𝜌 accordingly, until we reach a fix-point,
i.e., until re-executing any wires no longer changes 𝜌 . For this, we
make use of an evaluation function L·M𝜌,𝜇 , where L𝑒M𝜌,𝜇 denotes
the result of evaluating expression 𝑒 under wire valuation 𝜌 , and
registers valuation 𝜇. Finally, we pass the values of output wires
on as outputs of the circuit. After assigning variables, we perform
updates to registers stemming from assignments of the form 𝑟 ← 𝑣 .
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For this, we construct 𝜇′, the register valuation in the next clock
cycle by setting 𝜇′ = 𝜇 [𝑟 ← 𝜌 (𝑣)], for each 𝑟 ← 𝑣 ∈ 𝐴, where we
write 𝑓 [𝑥 ← 𝑣] to denote the function that acts like 𝑓 everywhere,
except for 𝑥 , where it returns 𝑣 . Note that since we computed 𝜌

using 𝜇 thereby using the values of registers in the last clock-cycle,
effectively all register updates are performed at once. This is crucial,
and reflects Verilog’s synchronous semantics.

C Translation from STLC to Verilog

We now describe a translation from STLC circuits to 𝜇-Verilog
programs. We first change the names of the variables in the circuit
to make sure each lambda abstraction and case expression variable
has a unique name. We exhaustively apply 𝛽-reductions and 𝜂-
expansions. 𝛽-reduction is defined in the evaluation rules of the
core language. 𝜂-expansion expands function terms, that is, for each
function term 𝑓 that is not a lambda abstraction and does not occur
in the function position of an application, we replace it with the
abstraction 𝜆𝑥. 𝑓 𝑥 , where 𝑥 is fresh. Exhaustively applying these
two rules ensures that there are no partially applied functions left,
and all remaining applied functions are primitive functions that
can be represented in 𝜇-Verilog.
Representing Records and Variants. Our translation needs to
encode record and variant types into variables. For records, it en-
codes the whole record into a variable of appropriate size, and then
uses the bit-slicing operator to extract the parts. For variants, it
encodes a representation of the label together with the actual data.
We now define utility functions that help with this encoding.
Representation Size. The function sizeof (𝑡) computes the number
of bits required to represent a type 𝑡 in 𝜇-Verilog. A base-type of size
Wordn requires 𝑛 bits. For a record type t = {l1 : t1, . . . , ln : tn},
we require the sum of the sizes of the record types, i.e., sizeof (t) =∑

𝑖 sizeof (𝑡𝑖 ). For a variant type t = ⟨l1 : t1, . . . , ln : tn⟩, the size
is defined as sizeof (t) =max𝑖 (sizeof (ti)) + ⌈log2 (𝑛)⌉, to account
for both the size of the largest field and the size of the label.
Field Extraction. Field extraction function field (𝑣, 𝑙) lets us access
field 𝑙 of a record type encoded into variable 𝑣 . For a record of
type {l1 : t1, . . . , ln : tn}, the expression field (𝑣, lm) is defined as
𝑣 [∑𝑚−1

𝑖=0 sizeof (ti) :
∑𝑚

𝑖=0 sizeof (ti)], meaning the field is accessed
by slicing the appropriate bit range based on the total size of the
preceding fields.
Label Encoding. The function tolabel(𝑙𝑖 ) converts the label 𝑙𝑖 of
a variant type t = ⟨l1 : t1, . . . , ln : tn⟩ to a 𝜇-Verilog bit-vector
of size ⌈log2 (𝑛)⌉ representing the integer 𝑖 , which is a tag for
the variant case corresponding to 𝑙𝑖 . For example, for the vari-
ant type ⟨Just : Word8, Nothing : ()⟩, tolabel(Just) = 0 and
tolabel(Nothing) = 1.
Label Extraction. Similar to field, the label extraction function
label(𝑣, 𝑙) lets us access the label 𝑙 of a record type encoded into
variable 𝑣 . For a record of type {l1 : t1, . . . , ln : tn}, the expres-
sion label(𝑣, lm) is defined as 𝑣 [∑𝑚

𝑖=0 sizeof (ti) :
∑𝑚

𝑖=0 sizeof (ti) +
⌈log2 (𝑛)⌉].
Casting. The function cast (𝑣, 𝑙) casts a variable by assum-
ing its size has label 𝑙s size where 𝑙 is a label of a vari-
ant type ⟨l1 : t1, . . . , ln : tn⟩. For example, for the variant type
⟨First : Word8, Second : Word9⟩, cast (𝑣, First) = 𝑣 [0 : 8] and

cast (𝑣, Second) = 𝑣 [0 : 9]. We use the casting function while trans-
forming a case-expression. The translated 𝜇-Verilog circuit includes
a wire for each ei in case ec of

−−−−−−−−−→
lixi → ei.

Mapping STLC Operators to 𝜇-Verilog Operators. We assume
there exist corresponding unary and binary 𝜇-Verilog operators
for each unary and binary STLC operator. For each unary STLC
operator uop, we represent the corresponding 𝜇-Verilog operator as
⊖uop. Similarly, for each binary STLC operator bop, we represent the
corresponding 𝜇-Verilog operator as ⊗bop. Note that in STLC, there
are no built-in operators. Operators are represented as primitive
functions.

Translation Function.We translate an STLC circuit 𝜆s i. e into
the 𝜇-Verilog circuit

𝐶 = {𝑣i} : 𝑇 (e,𝑉0)∪{𝑜 = field (𝑣e, 2), 𝑠′ = field (𝑣e, 1)} : {𝑠 ← 𝑠′} : {𝑜} .

The initial valuation is 𝑉0 = {𝑠 ↦→ 𝑣𝑠 , 𝑖 ↦→ 𝑣𝑖 }. The translation
function 𝑇 , defined in Figure 7, recursively translates each STLC
subexpression into a corresponding 𝜇-Verilog wire. It takes a valua-
tion 𝑉 as an additional argument, which maps 𝜇-Verilog variables
and registers to 𝜇-Verilog expressions. This valuation tracks bind-
ings introduced by case expressions and bookkeeps assumptions
made during translation.

For example, when translating the expression

e = case ec of
Just x→ ej
Nothing→ en

we must translate ej under the assumption that 𝑥 refers to a Just-
tagged value carried by ec. If Just is of type Word4, we extend the
valuation as 𝑉 ′ =𝑉 [𝑥 ↦→ 𝑣ec [0 : 4]] while evaluating 𝑇 (ej,𝑉 ′).

Example C.1. We now demonstrate our STLC to 𝜇-Verilog trans-
lation with a complete example. Consider the STLC circuit

e : Word8→ Maybe Word8→ (Word8, Word8)
e = 𝜆 𝑠 𝑖. (𝜆 𝑓 . (𝑓 𝑠, 𝑓 𝑠))

(case i of

Just x→ (−) x
Nothing→ (+) 1)

To translate e to a 𝜇-Verilog circuit, we first exhaustively apply
𝜂-expansions and 𝛽 reductions to get

e′ : Word8→ Maybe Word8→ (Word8, Word8)
e′ = 𝜆 s i.

(case i of

Just x→ x − s
Nothing→ 1 + s,
case i of

Just x→ x − s
Nothing→ 1 + s)
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𝑇 (x,𝑉 ) = {𝑣x =𝑉 (x) }
𝑇 (c,𝑉 ) = {𝑣c = c}
𝑇 (e1 bop e2,𝑉 ) = {𝑣e = 𝑣e1 ⊗bop 𝑣e2 } ∪𝑇 (e1,𝑉 ) ∪𝑇 (e2,𝑉 )
𝑇 (uop e1,𝑉 ) = {𝑣e = ⊖uop 𝑣e1 } ∪𝑇 (e1,𝑉 )
𝑇 (e1 .l,𝑉 ) = {𝑣e = field (𝑣e1 , l) } ∪𝑇 (e1,𝑉 )

𝑇 ({−−−−−→li = ei},𝑉 ) = {𝑣e = {𝑣e1 , . . . , 𝑣en }} ∪
⋃

𝑖 𝑇 (ei,𝑉 )
𝑇 (l e,𝑉 ) = {𝑣e = {tolabel (l), 𝑣e}} ∪𝑇 (e,𝑉 )

𝑇 (case ec of
−−−−−−−→
lixi → ei,𝑉 ) =𝑇 (ec,𝑉 ) ∪

⋃
𝑖 𝑇 (ei,𝑉 [xi ↦→ cast (ec, li ) ] )

∪{𝑣e = (if label (𝑣ec ) == 0 th 𝑣e0 el
if label (𝑣ec ) == 1 th 𝑣e1 el . . .

if label (𝑣ec ) == 𝑛 − 1 th 𝑣en−1 el 𝑣en ) }

Figure 7: The 𝑇 (e,𝑉 ) transformation from Circuits to 𝜇-Verilog.

We then apply the wire calculation function on the body of the
circuit expression 𝑒′ as
𝑇 (ebody,𝑉0) = 𝑇 (ecase,𝑉0) ∪ {𝑣e′ = {𝑣𝑐𝑎𝑠𝑒 , 𝑣𝑐𝑎𝑠𝑒 }}

= 𝑇 (x − s,𝑉0 [x ↦→ 𝑣𝑖 [0 : 8]]) ∪𝑇 (1 + s,𝑉0)
∪{𝑣case = if 𝑣𝑖 [8 : 9] == 0 th 𝑣x−s el 𝑣1+s}

= 𝑇 (𝑥,𝑉0 [𝑥 ↦→ 𝑣𝑖 [0 : 8]]) ∪ {𝑣x−s = 𝑣x − 𝑣s}
∪{𝑣1−s = 𝑣1 − 𝑣s} ∪𝑇 (1,𝑉0 [x ↦→ 𝑣𝑖 [0 : 8]])
∪{𝑣case = if 𝑣𝑖 [8 : 9] == 0 th 𝑣x−s el 𝑣1+s}

= {𝑣x = 𝑣𝑖 [0 : 8]} ∪ {𝑣x−s = 𝑣𝑥 − 𝑣𝑠 }
∪{𝑣1−s = 𝑣1 − 𝑣𝑠 } ∪ {𝑣1 = 1}
∪{𝑣case = if 𝑣𝑖 [8 : 9] == 0 th 𝑣x−s el 𝑣1+s}

= {𝑣𝑥 = 𝑣𝑖 [0 : 8], 𝑣x−s = 𝑣𝑥 − 𝑣𝑠 , 𝑣1−s = 𝑣1 − 𝑣𝑠 ,
𝑣1 = 1, 𝑣case = if 𝑣𝑖 [8 : 9] == 0 th 𝑣x−s el 𝑣1+s}.

Which finally gives us the circuit

𝐶 = {𝑣𝑖 } : 𝑇 (𝑒,𝑉0)∪{𝑜 = field (𝑣𝑏𝑜𝑑𝑦, 2), 𝑠′ = field (𝑣𝑏𝑜𝑑𝑦, 1)} : {𝑠 ← 𝑠′} : {𝑜} .
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