
AUTOMAP:
Inferring Rank-Polymorphic Function Applications

with Integer Linear Programming

Robert Schenck 1, Nikolaj Hey Hinnerskov 1, Troels Henriksen 1,
Magnus Madsen 2, Martin Elsman 1

1DIKU
University of Copenhagen

Denmark

2Aarhus University
Denmark

October 23th, 2024

Rank polymorphism

1 + 2 => 3

[1,2,3] + [4,5,6] => [5,7,9]

[1,2,3] + 4 => [5,6,7]

sqrt [[1,4,9], [16,25,36]] => [[1,2,3], [4,5,6]]

Rank polymorphism

1 + 2 => 3

[1,2,3] + [4,5,6] => [5,7,9]

[1,2,3] + 4 => [5,6,7]

sqrt [[1,4,9], [16,25,36]] => [[1,2,3], [4,5,6]]

Rank polymorphism

1 + 2 => 3

[1,2,3] + [4,5,6] => [5,7,9]

[1,2,3] + 4 => [5,6,7]

sqrt [[1,4,9], [16,25,36]] => [[1,2,3], [4,5,6]]

Rank polymorphism

1 + 2 => 3

[1,2,3] + [4,5,6] => [5,7,9]

[1,2,3] + 4 => [5,6,7]

sqrt [[1,4,9], [16,25,36]] => [[1,2,3], [4,5,6]]

Rank polymorphism

Rank polymorphism

The ability to apply functions to arguments with different ranks than the
function expects.

Makes code easier to read, more enjoyable to write, and closer to
math:

map (+) [1,2,3] [4,5,6] vs. [1,2,3] + [4,5,6]

Practically all rank polymorphic languages are dynamic:
NumPy, APL, MATLAB, . . .

Rank polymorphism

Rank polymorphism

The ability to apply functions to arguments with different ranks than the
function expects.

Makes code easier to read, more enjoyable to write, and closer to
math:

map (+) [1,2,3] [4,5,6] vs. [1,2,3] + [4,5,6]

Practically all rank polymorphic languages are dynamic:
NumPy, APL, MATLAB, . . .

Rank polymorphism

Rank polymorphism

The ability to apply functions to arguments with different ranks than the
function expects.

Makes code easier to read, more enjoyable to write, and closer to
math:

map (+) [1,2,3] [4,5,6] vs. [1,2,3] + [4,5,6]

Practically all rank polymorphic languages are dynamic:
NumPy, APL, MATLAB, . . .

map and rep

map f xs applies f to each element of xs:

map f [x_0, x_1, ..., x_n] = [f x_0, f x_1, ..., f x_n]

You can map functions that take multiple arguments too:

map (+) [x_0, ..., x_n] [y_0, ..., y_n]
= [x_0 + y_0, ..., x_n + y_n]

rep xmakes an array of unspecified length whose elements are all x:

rep x = [x, x, ..., x]

▶ We’ll ignore the question of howmany elements are needed.

map and rep

map f xs applies f to each element of xs:

map f [x_0, x_1, ..., x_n] = [f x_0, f x_1, ..., f x_n]

You can map functions that take multiple arguments too:

map (+) [x_0, ..., x_n] [y_0, ..., y_n]
= [x_0 + y_0, ..., x_n + y_n]

rep xmakes an array of unspecified length whose elements are all x:

rep x = [x, x, ..., x]

▶ We’ll ignore the question of howmany elements are needed.

map and rep

map f xs applies f to each element of xs:

map f [x_0, x_1, ..., x_n] = [f x_0, f x_1, ..., f x_n]

You can map functions that take multiple arguments too:

map (+) [x_0, ..., x_n] [y_0, ..., y_n]
= [x_0 + y_0, ..., x_n + y_n]

rep xmakes an array of unspecified length whose elements are all x:

rep x = [x, x, ..., x]

▶ We’ll ignore the question of howmany elements are needed.

An example

[[1,2],[3,4]] + 1

elaborates to

[[1,2],[3,4]] + rep (rep 1)

which further elaborates to

map (map (+)) [[1,2],[3,4]]
(rep (rep 1))

xss : [][]int
yss : [][]int
f: []int -> [][]int -> int

f xss yss

First, wemap f across bothmatrices:

map f xss yss

Because of the map, yss must be
replicated:

map f xss (rep yss)

reps can often be eliminated

map (\xs -> f xs yss) xss

An example

[[1,2],[3,4]] + 1

elaborates to

[[1,2],[3,4]] + rep (rep 1)

which further elaborates to

map (map (+)) [[1,2],[3,4]]
(rep (rep 1))

xss : [][]int
yss : [][]int
f: []int -> [][]int -> int

f xss yss

First, wemap f across bothmatrices:

map f xss yss

Because of the map, yss must be
replicated:

map f xss (rep yss)

reps can often be eliminated

map (\xs -> f xs yss) xss

An example

[[1,2],[3,4]] + 1

elaborates to

[[1,2],[3,4]] + rep (rep 1)

which further elaborates to

map (map (+)) [[1,2],[3,4]]
(rep (rep 1))

xss : [][]int
yss : [][]int
f: []int -> [][]int -> int

f xss yss

First, wemap f across bothmatrices:

map f xss yss

Because of the map, yss must be
replicated:

map f xss (rep yss)

reps can often be eliminated

map (\xs -> f xs yss) xss

An example

[[1,2],[3,4]] + 1

elaborates to

[[1,2],[3,4]] + rep (rep 1)

which further elaborates to

map (map (+)) [[1,2],[3,4]]
(rep (rep 1))

xss : [][]int
yss : [][]int
f: []int -> [][]int -> int

f xss yss

First, wemap f across bothmatrices:

map f xss yss

Because of the map, yss must be
replicated:

map f xss (rep yss)

reps can often be eliminated

map (\xs -> f xs yss) xss

An example

[[1,2],[3,4]] + 1

elaborates to

[[1,2],[3,4]] + rep (rep 1)

which further elaborates to

map (map (+)) [[1,2],[3,4]]
(rep (rep 1))

xss : [][]int
yss : [][]int
f: []int -> [][]int -> int

f xss yss

First, wemap f across bothmatrices:

map f xss yss

Because of the map, yss must be
replicated:

map f xss (rep yss)

reps can often be eliminated

map (\xs -> f xs yss) xss

An example

[[1,2],[3,4]] + 1

elaborates to

[[1,2],[3,4]] + rep (rep 1)

which further elaborates to

map (map (+)) [[1,2],[3,4]]
(rep (rep 1))

xss : [][]int
yss : [][]int
f: []int -> [][]int -> int

f xss yss

First, wemap f across bothmatrices:

map f xss yss

Because of the map, yss must be
replicated:

map f xss (rep yss)

reps can often be eliminated

map (\xs -> f xs yss) xss

An example

[[1,2],[3,4]] + 1

elaborates to

[[1,2],[3,4]] + rep (rep 1)

which further elaborates to

map (map (+)) [[1,2],[3,4]]
(rep (rep 1))

xss : [][]int
yss : [][]int
f: []int -> [][]int -> int

f xss yss

First, wemap f across bothmatrices:

map f xss yss

Because of the map, yss must be
replicated:

map f xss (rep yss)

reps can often be eliminated

map (\xs -> f xs yss) xss

Goal
For each function application, the compiler should automatically insert
maps or reps to make the application rank-correct.

f x =⇒ map (... (map f) ...) (rep ... (rep x) ...)

Goal
For each function application, the compiler should automatically insert
maps or reps to make the application rank-correct.

f x =⇒ map (... (map f) ...) (rep ... (rep x) ...)

Challenge: ambiguity

sum : []int -> int
length : []a -> int
xss : [][]int

sum (length xss)

Many rank-correct elaborations:
1. sum (rep (length xss))

2. sum (map length xss)

3. map sum (map (map length) (rep xss))

4. ...

Challenge: ambiguity

sum : []int -> int
length : []a -> int
xss : [][]int

sum (length xss)

Many rank-correct elaborations:
1. sum (rep (length xss))

2. sum (map length xss)

3. map sum (map (map length) (rep xss))

4. ...

Challenge: ambiguity

sum : []int -> int
length : []a -> int
xss : [][]int

sum (length xss)

Many rank-correct elaborations:
1. sum (rep (length xss))

2. sum (map length xss)

3. map sum (map (map length) (rep xss))

4. ...

Challenge: ambiguity

sum : []int -> int
length : []a -> int
xss : [][]int

sum (length xss)

Many rank-correct elaborations:
1. sum (rep (length xss))

2. sum (map length xss)

3. map sum (map (map length) (rep xss))

4. ...

The Strategy

Rule 1
An application can be mapped or repped (or neither) but never both.

OK:
▶ map f x
▶ g (rep (rep x))
▶ (map (map h) x) (rep y)

BAD:
▶ map f (rep x)
▶ (map (map g)) (rep x)

Never necessary to map and rep in the same application to obtain a
rank-correct program.

The Strategy

Rule 1
An application can be mapped or repped (or neither) but never both.

OK:
▶ map f x

▶ g (rep (rep x))
▶ (map (map h) x) (rep y)

BAD:
▶ map f (rep x)
▶ (map (map g)) (rep x)

Never necessary to map and rep in the same application to obtain a
rank-correct program.

The Strategy

Rule 1
An application can be mapped or repped (or neither) but never both.

OK:
▶ map f x
▶ g (rep (rep x))

▶ (map (map h) x) (rep y)

BAD:
▶ map f (rep x)
▶ (map (map g)) (rep x)

Never necessary to map and rep in the same application to obtain a
rank-correct program.

The Strategy

Rule 1
An application can be mapped or repped (or neither) but never both.

OK:
▶ map f x
▶ g (rep (rep x))
▶ (map (map h) x) (rep y)

BAD:
▶ map f (rep x)
▶ (map (map g)) (rep x)

Never necessary to map and rep in the same application to obtain a
rank-correct program.

The Strategy

Rule 1
An application can be mapped or repped (or neither) but never both.

OK:
▶ map f x
▶ g (rep (rep x))
▶ (map (map h) x) (rep y)

BAD:
▶ map f (rep x)
▶ (map (map g)) (rep x)

Never necessary to map and rep in the same application to obtain a
rank-correct program.

The Strategy

Rule 1
An application can be mapped or repped (or neither) but never both.

OK:
▶ map f x
▶ g (rep (rep x))
▶ (map (map h) x) (rep y)

BAD:
▶ map f (rep x)
▶ (map (map g)) (rep x)

Never necessary to map and rep in the same application to obtain a
rank-correct program.

The Strategy

Rule 2
Minimize the number of inserted maps and reps.

Generally aligns with programmer’s intent; makes for a simple
mental model.

The minimization is over all the applications of a top-level definition.
▶ Only have to choose from the set of minimal solutions.

sum (length xss) can be elaborated to:
1. sum (rep (length xss))
2. sum (map length xss)
3. map sum (map (map length) (rep xss))
4. ...

The Strategy

Rule 2
Minimize the number of inserted maps and reps.

Generally aligns with programmer’s intent; makes for a simple
mental model.

The minimization is over all the applications of a top-level definition.
▶ Only have to choose from the set of minimal solutions.

sum (length xss) can be elaborated to:
1. sum (rep (length xss))
2. sum (map length xss)
3. map sum (map (map length) (rep xss))
4. ...

The Strategy

Rule 2
Minimize the number of inserted maps and reps.

Generally aligns with programmer’s intent; makes for a simple
mental model.

The minimization is over all the applications of a top-level definition.
▶ Only have to choose from the set of minimal solutions.

sum (length xss) can be elaborated to:
1. sum (rep (length xss))
2. sum (map length xss)
3. map sum (map (map length) (rep xss))
4. ...

The Strategy

Rule 2
Minimize the number of inserted maps and reps.

Generally aligns with programmer’s intent; makes for a simple
mental model.

The minimization is over all the applications of a top-level definition.
▶ Only have to choose from the set of minimal solutions.

sum (length xss) can be elaborated to:
1. sum (rep (length xss))

2. sum (map length xss)
3. map sum (map (map length) (rep xss))
4. ...

The Strategy

Rule 2
Minimize the number of inserted maps and reps.

Generally aligns with programmer’s intent; makes for a simple
mental model.

The minimization is over all the applications of a top-level definition.
▶ Only have to choose from the set of minimal solutions.

sum (length xss) can be elaborated to:
1. sum (rep (length xss))
2. sum (map length xss)

3. map sum (map (map length) (rep xss))
4. ...

The Strategy

Rule 2
Minimize the number of inserted maps and reps.

Generally aligns with programmer’s intent; makes for a simple
mental model.

The minimization is over all the applications of a top-level definition.
▶ Only have to choose from the set of minimal solutions.

sum (length xss) can be elaborated to:
1. sum (rep (length xss))
2. sum (map length xss)
3. map sum (map (map length) (rep xss))

4. ...

The Strategy

Rule 2
Minimize the number of inserted maps and reps.

Generally aligns with programmer’s intent; makes for a simple
mental model.

The minimization is over all the applications of a top-level definition.
▶ Only have to choose from the set of minimal solutions.

sum (length xss) can be elaborated to:
1. sum (rep (length xss))
2. sum (map length xss)
3. map sum (map (map length) (rep xss))
4. ...

The Strategy

Rule 2
Minimize the number of inserted maps and reps.

Generally aligns with programmer’s intent; makes for a simple
mental model.

The minimization is over all the applications of a top-level definition.
▶ Only have to choose from the set of minimal solutions.

sum (length xss) can be elaborated to:
1. sum (rep (length xss))
2. sum (map length xss)
3. map sum (map (map length) (rep xss))
4. ...

Challenge: elaboration is global

sum (length xss) can be elaborated to:
1. sum (rep (length xss))

▶ Local reasoning: in the application of sum to length xss, the argument is
underdimensioned, so a rep is inserted.

2. sum (map length xss)
▶ Global reasoning: length xss is rank-correct as-is, but a map is inserted

because of the outer sum application.

Elaborations of inner applications affect outer applications.
▶ To find all minimal elaborations, must consider all applications

simultaneously.

Challenge: elaboration is global

sum (length xss) can be elaborated to:
1. sum (rep (length xss))

▶ Local reasoning: in the application of sum to length xss, the argument is
underdimensioned, so a rep is inserted.

2. sum (map length xss)
▶ Global reasoning: length xss is rank-correct as-is, but a map is inserted

because of the outer sum application.

Elaborations of inner applications affect outer applications.
▶ To find all minimal elaborations, must consider all applications

simultaneously.

Challenge: elaboration is global

sum (length xss) can be elaborated to:
1. sum (rep (length xss))

▶ Local reasoning: in the application of sum to length xss, the argument is
underdimensioned, so a rep is inserted.

2. sum (map length xss)
▶ Global reasoning: length xss is rank-correct as-is, but a map is inserted

because of the outer sum application.

Elaborations of inner applications affect outer applications.
▶ To find all minimal elaborations, must consider all applications

simultaneously.

Challenge: type variables

Futhark has parametric polymorphism:

id : a -> a
length : []a -> int

A type variable can have any rank!

How do we statically insert maps and reps in the presence of type
variables, whose ranks aren’t known?

Challenge: type variables

Futhark has parametric polymorphism:

id : a -> a
length : []a -> int

A type variable can have any rank!

How do we statically insert maps and reps in the presence of type
variables, whose ranks aren’t known?

Challenge: type variables

Futhark has parametric polymorphism:

id : a -> a
length : []a -> int

A type variable can have any rank!

How do we statically insert maps and reps in the presence of type
variables, whose ranks aren’t known?

Constraints

Suppose

f : p -> b
x : a

The application f x has constraint

p = a

We only care about rank, so relax to

|p| = |a|

where |p| is the rank of p.
For example, |[][]int| = 2 and |int| = 0.

Constraints

Suppose

f : p -> b
x : a

The application f x has constraint

p = a

We only care about rank, so relax to

|p| = |a|

where |p| is the rank of p.
For example, |[][]int| = 2 and |int| = 0.

Constraints

Suppose

f : p -> b
x : a

The application f x has constraint

p = a

We only care about rank, so relax to

|p| = |a|

where |p| is the rank of p.
For example, |[][]int| = 2 and |int| = 0.

Constraints - map
Rank polymorphisms means rank differences are allowed.

Case |p| < |a|:
▶ Introduce a rank variableM to account for the difference:

M+ |p| = |a|

▶ sqrt : int -> int
[1,2,3] : []int

Application sqrt [1,2,3] gives the constraint

M+ |int|︸ ︷︷ ︸
0

= |[]int|︸ ︷︷ ︸
1

=⇒ M = 1

▶ M is equal to the number of maps required:

map sqrt [1,2,3]

Constraints - map
Rank polymorphisms means rank differences are allowed.

Case |p| < |a|:
▶ Introduce a rank variableM to account for the difference:

M+ |p| = |a|

▶ sqrt : int -> int
[1,2,3] : []int

Application sqrt [1,2,3] gives the constraint

M+ |int|︸ ︷︷ ︸
0

= |[]int|︸ ︷︷ ︸
1

=⇒ M = 1

▶ M is equal to the number of maps required:

map sqrt [1,2,3]

Constraints - map
Rank polymorphisms means rank differences are allowed.

Case |p| < |a|:
▶ Introduce a rank variableM to account for the difference:

M+ |p| = |a|

▶ sqrt : int -> int
[1,2,3] : []int

Application sqrt [1,2,3] gives the constraint

M+ |int|︸ ︷︷ ︸
0

= |[]int|︸ ︷︷ ︸
1

=⇒ M = 1

▶ M is equal to the number of maps required:

map sqrt [1,2,3]

Constraints - map
Rank polymorphisms means rank differences are allowed.

Case |p| < |a|:
▶ Introduce a rank variableM to account for the difference:

M+ |p| = |a|

▶ sqrt : int -> int
[1,2,3] : []int

Application sqrt [1,2,3] gives the constraint

M+ |int|︸ ︷︷ ︸
0

= |[]int|︸ ︷︷ ︸
1

=⇒ M = 1

▶ M is equal to the number of maps required:

map sqrt [1,2,3]

Constraints - rep

Case |p| > |a|:
▶ Introduce a rank variable R to account for the difference:

|p| = R+ |a|

▶ Example: length : []b -> int The application length 3 gives the
constraint

|[] b| = R+ |int|
1+ |b| = R =⇒ R = 1, |b| = 0

R = 2, |b| = 1
. . .

▶ R is equal to the number of reps required:
▶ length (rep 3)
▶ length (rep (rep 3))
▶ . . .

Constraints - rep

Case |p| > |a|:
▶ Introduce a rank variable R to account for the difference:

|p| = R+ |a|

▶ Example: length : []b -> int The application length 3 gives the
constraint

|[] b| = R+ |int|
1+ |b| = R =⇒ R = 1, |b| = 0

R = 2, |b| = 1
. . .

▶ R is equal to the number of reps required:
▶ length (rep 3)
▶ length (rep (rep 3))
▶ . . .

Constraints - rep

Case |p| > |a|:
▶ Introduce a rank variable R to account for the difference:

|p| = R+ |a|

▶ Example: length : []b -> int The application length 3 gives the
constraint

|[] b| = R+ |int|
1+ |b| = R =⇒ R = 1, |b| = 0

R = 2, |b| = 1
. . .

▶ R is equal to the number of reps required:
▶ length (rep 3)
▶ length (rep (rep 3))
▶ . . .

Constraints - rep

Case |p| > |a|:
▶ Introduce a rank variable R to account for the difference:

|p| = R+ |a|

▶ Example: length : []b -> int The application length 3 gives the
constraint

|[] b| = R+ |int|
1+ |b| = R =⇒ R = 1, |b| = 0

R = 2, |b| = 1
. . .

▶ R is equal to the number of reps required:
▶ length (rep 3)
▶ length (rep (rep 3))
▶ . . .

Constraints - Summary

Each application of a function f : p -> c to an argument x : a
generates a constraint

M+ |p| = R+ |a|

Rule 1: can either map or rep but not both

M = 0 or R = 0

Constraints - Summary

Each application of a function f : p -> c to an argument x : a
generates a constraint

M+ |p| = R+ |a|

Rule 1: can either map or rep but not both

M = 0 or R = 0

Constraints to ILPs

Collect the constraints for each function application.

Example: sum (length xss)

minimize
M1 + R1 +M2 + R2

subject to

M1 + 1+ |a| = R1 + 2
M1 = 0 or R1 = 0

}
length

M2 + 1 = R2 +M1
M2 = 0 or R2 = 0

}
sum

Rule 2: Minimize the number of maps and reps
The or-constraints can be linearized to obtain an integer linear
program (ILP).

Constraints to ILPs

Collect the constraints for each function application.
Example: sum (length xss)

minimize
M1 + R1 +M2 + R2

subject to

M1 + 1+ |a| = R1 + 2
M1 = 0 or R1 = 0

}
length

M2 + 1 = R2 +M1
M2 = 0 or R2 = 0

}
sum

Rule 2: Minimize the number of maps and reps
The or-constraints can be linearized to obtain an integer linear
program (ILP).

Constraints to ILPs

Collect the constraints for each function application.
Example: sum (length xss)

minimize
M1 + R1 +M2 + R2

subject to

M1 + 1+ |a| = R1 + 2
M1 = 0 or R1 = 0

}
length

M2 + 1 = R2 +M1
M2 = 0 or R2 = 0

}
sum

Rule 2: Minimize the number of maps and reps
The or-constraints can be linearized to obtain an integer linear
program (ILP).

Constraints to ILPs

Collect the constraints for each function application.
Example: sum (length xss)

minimize
M1 + R1 +M2 + R2

subject to

M1 + 1+ |a| = R1 + 2
M1 = 0 or R1 = 0

}
length

M2 + 1 = R2 +M1
M2 = 0 or R2 = 0

}
sum

Rule 2: Minimize the number of maps and reps
The or-constraints can be linearized to obtain an integer linear
program (ILP).

Constraints to ILPs

Collect the constraints for each function application.
Example: sum (length xss)

minimize
M1 + R1 +M2 + R2

subject to

M1 + 1+ |a| = R1 + 2
M1 = 0 or R1 = 0

}
length

M2 + 1 = R2 +M1
M2 = 0 or R2 = 0

}
sum

Rule 2: Minimize the number of maps and reps

The or-constraints can be linearized to obtain an integer linear
program (ILP).

Constraints to ILPs

Collect the constraints for each function application.
Example: sum (length xss)

minimize
M1 + R1 +M2 + R2

subject to
M1 + 1+ |a| = R1 + 2
M1 = 0 or R1 = 0

}
length

M2 + 1 = R2 +M1
M2 = 0 or R2 = 0

}
sum

Rule 2: Minimize the number of maps and reps

The or-constraints can be linearized to obtain an integer linear
program (ILP).

Constraints to ILPs

Collect the constraints for each function application.
Example: sum (length xss)

minimize
M1 + R1 +M2 + R2

subject to
M1 + 1+ |a| = R1 + 2
M1 = 0 or R1 = 0

}
length

M2 + 1 = R2 +M1
M2 = 0 or R2 = 0

}
sum

Rule 2: Minimize the number of maps and reps
The or-constraints can be linearized to obtain an integer linear
program (ILP).

Automap TL;DR

1. For each application generate rank equality and Rule 1 (map or rep
but not both) constraints.

2. Transform the constraint set into an ILP and solve.

3. Use the ILP solution to elaborate. E.g., if the i-th application f x has
Mi = 3 and Ri = 0:

f x =⇒ map (map (map f)) x

4. Type check elaborated program and continue with compilation as
usual.

Automap TL;DR

1. For each application generate rank equality and Rule 1 (map or rep
but not both) constraints.

2. Transform the constraint set into an ILP and solve.

3. Use the ILP solution to elaborate. E.g., if the i-th application f x has
Mi = 3 and Ri = 0:

f x =⇒ map (map (map f)) x

4. Type check elaborated program and continue with compilation as
usual.

Automap TL;DR

1. For each application generate rank equality and Rule 1 (map or rep
but not both) constraints.

2. Transform the constraint set into an ILP and solve.

3. Use the ILP solution to elaborate. E.g., if the i-th application f x has
Mi = 3 and Ri = 0:

f x =⇒ map (map (map f)) x

4. Type check elaborated program and continue with compilation as
usual.

Automap TL;DR

1. For each application generate rank equality and Rule 1 (map or rep
but not both) constraints.

2. Transform the constraint set into an ILP and solve.

3. Use the ILP solution to elaborate. E.g., if the i-th application f x has
Mi = 3 and Ri = 0:

f x =⇒ map (map (map f)) x

4. Type check elaborated program and continue with compilation as
usual.

User experience

map and rep are normal source-level functions.
▶ Programmer free to use Automap to whatever extent they wish.

Ambiguity feedback:

Error: sum (length xss) has multiple elaborations:
1. sum (rep (length xss))
2. sum (map length xss)

▶ Nice error messages.

▶ Disambiguation is easy: just insert a map or rep into the source.

Fully transparent: the compiler can always elaborate any implicit
maps or reps.

User experience

map and rep are normal source-level functions.
▶ Programmer free to use Automap to whatever extent they wish.

Ambiguity feedback:

Error: sum (length xss) has multiple elaborations:
1. sum (rep (length xss))
2. sum (map length xss)

▶ Nice error messages.

▶ Disambiguation is easy: just insert a map or rep into the source.

Fully transparent: the compiler can always elaborate any implicit
maps or reps.

User experience

map and rep are normal source-level functions.
▶ Programmer free to use Automap to whatever extent they wish.

Ambiguity feedback:

Error: sum (length xss) has multiple elaborations:
1. sum (rep (length xss))
2. sum (map length xss)

▶ Nice error messages.

▶ Disambiguation is easy: just insert a map or rep into the source.

Fully transparent: the compiler can always elaborate any implicit
maps or reps.

User experience

map and rep are normal source-level functions.
▶ Programmer free to use Automap to whatever extent they wish.

Ambiguity feedback:

Error: sum (length xss) has multiple elaborations:
1. sum (rep (length xss))
2. sum (map length xss)

▶ Nice error messages.

▶ Disambiguation is easy: just insert a map or rep into the source.

Fully transparent: the compiler can always elaborate any implicit
maps or reps.

Practical impact

We implemented Automap in Futhark, a functional array language
that supports parametric polymorphism and top-level
let-polymorphism.

Difficult to quantify value of feature that is glorified syntax sugar.

We (manually!) rewrote programs to take advantage of Automap
when we judged it improved readability.

Practical impact

We implemented Automap in Futhark, a functional array language
that supports parametric polymorphism and top-level
let-polymorphism.

Difficult to quantify value of feature that is glorified syntax sugar.

We (manually!) rewrote programs to take advantage of Automap
when we judged it improved readability.

Practical impact

We implemented Automap in Futhark, a functional array language
that supports parametric polymorphism and top-level
let-polymorphism.

Difficult to quantify value of feature that is glorified syntax sugar.

We (manually!) rewrote programs to take advantage of Automap
when we judged it improved readability.

Practical impact: before

def main [nK][nX]
(kx: [nK]f32) (ky: [nK]f32) (kz: [nK]f32)
(x: [nX]f32) (y: [nX]f32) (z: [nX]f32)
(phiR: [nK]f32) (phiI: [nK]f32)

: ([nX]f32, [nX]f32) =
let phiM = map (\r i -> r*r + i*i) phiR phiI
let as = map (\x_e y_e z_e ->

map (2*pi*)
(map (\kx_e ky_e kz_e ->

kx_e*x_e + ky_e*y_e + kz_e*z_e)
kx ky kz))

x y z
let qr = map (\a -> sum(map2 (*) phiM (map cos a))) as
let qi = map (\a -> sum(map2 (*) phiM (map sin a))) as
in (qr, qi)

Practical impact: after

def main [nK][nX]
(kx: [nK]f32) (ky: [nK]f32) (kz: [nK]f32)
(x: [nX]f32) (y: [nX]f32) (z: [nX]f32)
(phiR: [nK]f32) (phiI: [nK]f32)

: ([nX]f32, [nX]f32) =
let phiM = phiR*phiR + phiI*phiI
let as = 2*pi*(kx*transpose (rep x)

+ ky*transpose (rep y)
+ kz*transpose (rep z))

let qr = sum (cos as * phiM)
let qi = sum (sin as * phiM)
in (qr, qi)

Metrics from changing a benchmark suite

Proportion of ILP problems
that have less than some
given number of constraints.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 4 16 64 256 1024 4096 16384

Fr
a
ct

io
n

Size of ILP problem

Number of programs: 67
Lines of code: 8621 ⇒ 8515
Change in maps: 467 ⇒ 213
Largest ILP size: 28104 constraints
Median ILP size: 16 constraints
Mean ILP size: 116 constraints
Mean type checking slowdown: 2.50×

Summary

Automap is a conservative extension of/compatible with a
Hindley-Milner-style type system for array programming.

Anything inferred can also be inserted explicitly (much like classic
type systems!)

Type checking based on some heavy machinery (ILP), but we
suspect of a fairly simple kind.

Implemented in Futhark, but not really production ready yet.
▶ TODO: quality of type errors, type checking speed, better ambiguity

checking.

Summary

Automap is a conservative extension of/compatible with a
Hindley-Milner-style type system for array programming.

Anything inferred can also be inserted explicitly (much like classic
type systems!)

Type checking based on some heavy machinery (ILP), but we
suspect of a fairly simple kind.

Implemented in Futhark, but not really production ready yet.
▶ TODO: quality of type errors, type checking speed, better ambiguity

checking.

Summary

Automap is a conservative extension of/compatible with a
Hindley-Milner-style type system for array programming.

Anything inferred can also be inserted explicitly (much like classic
type systems!)

Type checking based on some heavy machinery (ILP), but we
suspect of a fairly simple kind.

Implemented in Futhark, but not really production ready yet.
▶ TODO: quality of type errors, type checking speed, better ambiguity

checking.

Summary

Automap is a conservative extension of/compatible with a
Hindley-Milner-style type system for array programming.

Anything inferred can also be inserted explicitly (much like classic
type systems!)

Type checking based on some heavy machinery (ILP), but we
suspect of a fairly simple kind.

Implemented in Futhark, but not really production ready yet.
▶ TODO: quality of type errors, type checking speed, better ambiguity

checking.

That’s it!

Check out Futhark: https://futhark-lang.org
▶ There’s a blog post on Automap that covers this talk in more detail.

▶ The paper with a full formalization can also be found there.

These slides and more about me at https://rschenck.com.

https://futhark-lang.org
https://rschenck.com

