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Abstract

While a common staple of many modern functional programming
languages, sum types are an unusual feature in specialized, compute-
oriented languages. We advocate that sum types have merit even in
this restricted setting: providing increased safety and better abstrac-
tion at manageable cost.

This thesis explores adding sum types to Futhark—a compute-oriented,
purely functional, data-parallel array programming language. The
work includes a theoretical development of sum types in model type
system closely related to Futhark’s type system, implementation de-
tails for adding sum types to the Futhark compiler, and an analysis of
the implementation—including suggestions to improve performance.
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Chapter 1

Introduction

This thesis covers the design and implementation of sum types in the Futhark1 pro-
gramming language. Futhark is a functional high-performance data-parallel array
language: its intended purpose is to be used to accelerate compute-intensive parallel
tasks [HSE+17]. Sum types are an unusual feature of similar languages. Notably, the
type system of the NESL [Ble95] data-parallel programming language is somewhat
spartan (with no support for sum types) and Accelerate—an embedded data-parallel
language in the Haskell programming language—limits the types of array elements
to primitive types [CKL+11]. On the other hand, the Data Parallel Haskell project
implemented nested data-parallel programming into the Glasgow Haskell Compiler
(GHC) with support for Haskell’s rich type system, including sum types [CLPJ+07].
Unfortunately, work on the project ceased in 2010 and the existing implementation
work was ultimately removed from GHC.2

Sum types are a staple of modern functional programming languages with good
reason: programs dealing with heterogeneous collections of data arise often and type-
and expression-level features to deal with such collections are a powerful abstraction
for the programmer. We believe that sum types are also merited in programming
languages like Futhark. In our experience, rewriting Futhark programs to use sum
types results in simpler, more expressive programs that make good use of Futhark’s
type checker (see Section 4.5 for a discussion).

Opponents of sum types in a computational language like Futhark may have per-
formance concerns. While the implementation described in this thesis isn’t particu-
larly efficient, a number of possible improvements are discussed in Chapter 4. With
sufficient (and realistic) optimization the cost of sum types can be made sufficiently
small for pragmatic use. Of course, sum types may be used judiciously by the pro-
grammer and can be omitted where performance and efficiency is critical.

Contributions

This thesis contributes the following:

1. A formal study of sum types in a model language based off of Futhark, including
a proof of soundness (Chapter 2).

1https://futhark-lang.org/
2See the discussion at https://gitlab.haskell.org/ghc/ghc/wikis/data-parallel
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2. The addition of sum type support to the Futhark compiler (Chapter 3), consisting
of three main parts:

(a) An extension of Futhark’s syntax with sum types, constructor expressions,
and match expressions as well as expanding Futhark’s pattern syntax (Sec-
tion 3.2).

(b) Augmentation of Futhark’s type system to support sum types (Section 3.3,
Section 3.4).

(c) Transformation logic to convert sum types, constructor expressions, and
match expressions into Futhark’s intermediate representation language (Sec-
tion 3.5).

3. An analysis of the implementation, including suggestions to improve efficiency
as well as case studies of example Futhark programs which benefit from sum
types.
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Chapter 2

Theory

This chapter is a formal study of sum types in a language modeled after Futhark.
We begin by defining some basics of the language before introducing a monomor-
phic type system for the language and proving a number of properties about it. We
subsequently study a constraint-based version of the type system that closely resem-
bles Futhark’s type system. As the language and type system are good facsimiles of
Futhark’s respective counterparts (as far as sum types are concerned, at least) this the-
oretical analysis is important in that it informs us about the correctness of the actual
implementation.

2.1 Syntax

2.1.1 Types

For the theoretical development, we describe a simple λ-calculus, with syntax closely
related to a subset of Futhark’s syntax. Let id range over a set of labels L and let t
range over a set of built-in types, which includes at least the unit type unit.3 Types
are defined by the grammar

τ ::= t built-in type
| τ1 → τ2 function
| (τ1, τ2) tuple
| #id1 τ1 | · · · | #idn τn sum type

We let T be the set of all types, ranged over by τ, σ, and ψ in the discussion that
follows.

Sum types

Of special interest are sum types, which are composed of clauses separated by a pipe;
each clause consists of a #-prefixed identifier—the constructor—followed by a type
field, which delineates the type of the payload of the constructor. Each constructor
has precisely one payload field. A sum type with two distinct clauses with the same
constructor is illegal. The ordering of the clauses does not matter: two sum types

3Which adds supports for enumerations, enabling the calculus to represent conditionals via matches on
the type #true () | #false ().
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consisting of different permutations of the same clauses are the same type. Two sum
types are disjoint if they share no constructors in common. The clauses of two disjoint
sum types may be merged to form a larger sum type using the | operator.

2.1.2 Terms

Let x, y, z range over the set of variables V and let c range over the set of expression
constants C, which includes at least the unit value (()). Let E be the set of terms,
which are defined by the grammar4

e ::= x variable
| c constant
| e : τ type ascription
| (e1, e2) tuple
| λx : τ. e function
| e1e2 application
| #id e constructor
| match e case p1 → e1 · · · case pn → en match

where p is a pattern, described in Section 2.1.4. The presence of type ascriptions in a
minimal language like this may seem odd: they are in fact a necessary component of
well-typed constructor terms, as we’ll see later in the development. We also assume
the existence of a function const : E → T which returns the type of a constant term;
e.g., const(()) = unit.

2.1.3 Substitutions

A term substitution is a partial mapping from term variables to terms. For example,
we write a term substitution as [x 7→ e1, y 7→ e2], which maps x to e1 and y to e2.
Substitutions always substitute all variables at once, i.e., [x 7→ ye1, y 7→ e2](xy) =
ye1e2, not e2e1e2. The substitution operation always does any necessary renaming to
avoid variable capture/release (we leave these specifics unspecified). A substitution S
works as one would expect on terms:

S(x) =

{
v if (x 7→ v) ∈ S for some v
x otherwise

S(c) = c

S(e : τ) = S(e) : τ

S(e1, e2) = (S(e1), S(e2))

S(λx : τ. e) = λx : τ. S(e)

S(e1e2) = S(e1)S(e2)

S(#id e) = #id S(e)

S(match e case p1 → e1 · · · case pn → en) = match S(e) case p1 → S(e1) · · · case pn → S(en)

4Note the lack of a let-expression: let p = e1 in e2 is equivalent to match e1 case p→ e2. This is actually
safer in general since a failed pattern match can be guarded against by augmenting matches with a catchall
case (case x → e).
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In the case of multiple mappings for the same variable, the right-most mapping of a
substitution takes precedence: [x 7→ e1, x 7→ e2]x = e2. Note that the empty substitu-
tion [] is the identity substitution.

2.1.4 Patterns

Patterns are defined by the grammar5

p ::= c | x | (p1, p2) | #id p

Note that a given variable x may not be repeated in a pattern (all variables in a pattern
must be distinct). Along with patterns, we define a pattern match operator

? : P → E → S ∪ {⊥}

where P is the set of patterns and S is the set of term substitutions. We define the
operator piece-wise:6

cp ? ce =

{
[] cp = ce

⊥ otherwise

x ? e = [x 7→ e]

(p1, p2) ? (e1, e2) =


S1 ∪ S2 S1 = p1 ? e1, S2 = p2 ? e2

S1 6=⊥, and S2 6=⊥
⊥ otherwise

#idp p ? #ide e =

{
p ? e #idp = #ide

⊥ otherwise

p ? e =⊥

Intuitively, ? takes a pattern p and an expression e to match that pattern on and either
says that the match failed (p ? e =⊥) or returns a substitution S with the bindings
that the match generated.

2.2 Evaluation

Values

Evaluation is call-by-value and left-to-right. To formalize this, we first define values:

v ::= c | λx . e | #id v | (v1, v2) | v : τ

Values are simply terms which are fully evaluated (i.e., cannot be simplified further via
a step of computation) and closed (have no free variables).

5Patterns often also include the wildcard pattern ( ), which acts as a non-binding variable. We omit
wildcards in the theoretical development as they’re unnecessary (a variable can be used and the binding
can be discarded) and would complicate constructing typing judgments on patterns (see Section 2.3.2).

6When expanding the ? operator, the definition should be read top-to-bottom until a match on the LHS
is found with the current usage.
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2.2.1 Operational semantics

Primitive reduction

We define a primitive reduction relation  p which describes a step of computation in
the language. In our case, that consists of either a) function application or b) match
reduction. These reduction rules are shown in Figure 2.1 below.

(λx : τ. e)v p [x 7→ v]e
S-App

pi ? v = Si i is the smallest integer with Si 6=⊥
match v case p1 → e1 · · · case pn → en  p Si(ei)

S-Match

Figure 2.1: Primitive reductions for function application and match-expressions.

Evaluation contexts

In order to constrain where reductions may take place and in what order we define
evaluation contexts:

E ::= • | vE | Ee | (v, E) | (E, e) | #id E : τ | E : τ | match E case p1 → e1 · · · case pn → en

An evaluation context E may be thought of as an expression-building function E : E →
E . It accepts an expression and places it within a larger expression. Each evaluation
context has exactly one hole (•) which is substituted for the expression that the context
is applied on. We write E[e] to replace E’s hole with e. More precisely, E[e] = [• 7→ e]E.

Augmenting primitive reduction ( p), we define a general reduction relation  
which describes a step of computation for any reducible term in the language. The
only “real” computation is defined by the primitive reductions of Figure 2.1. All other
reductions are simply contextual primitive reductions, a notion captured by the context
rule:

e p e′

E[e] E[e′]
CTX

With CTX, evaluation contexts enforce the call-by-value, left-right semantics of the
language.

2.3 A monomorphic type system

In this section, we’ll develop a simple monomorphic type system for our language
and prove some standard properties about it. In Section 2.5, we’ll augment the system
with Hindley-Damas constraint-based typing that is closely related to Futhark’s type
checker.

2.3.1 Typing relation

A typing context Γ is a sequence of term variables and their types. A type relation is a
three-place relation

Γ ` e : τ
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which asserts that term e has type τ under the typing context Γ. As usual, we use a
comma to extend the environment: Γ, x : τ is the context Γ extended with a variable x
(of type τ). A typing relation with the empty context is written with ` e : τ.

2.3.2 Patterns

Binding pattern variables

All variables appearing in patterns are free.7 This poses a difficulty when typing
match statements: how can we (correctly) assign the variables in a pattern types? We
must do so in order to a) answer whether a pattern makes sense given the term being
matched upon and b) determine the type of the body of a case expression.

To address this issue, we define a function

bind : P × T → {x : τ | x ∈ V , τ ∈ T }

that generates variable-typing pairs for pattern variables:

bind(p, τ) =


{x : τ} p = x
bind(p1, τ1) ∪ bind(p2, τ2) p = (p1, p2), τ = (τ1, τ2)

bind(p′, τi) p = #idp p′, τ = #id1 τ1 | · · · | #idn τn, idp = idi

∅ otherwise

Since patterns are defined by a grammar that is just a subset of the terms grammar—
using bind—we can massage the typing relation to make sense on patterns:

bind(p, τ) ` p : τ

This also explains why bind doesn’t include a “failure” result like the pattern match
operator ? does: if a pattern fails to match the type passed to bind, it will be impossible
to construct a type assertion featuring the pattern and the given type (and bind will
just return the empty set).

Exhaustivity

We need to ensure that matches don’t get stuck due to inexhaustive patterns. We
define a predicate exhaustive(P, τ) which takes a set of patterns P and a type τ and
is true if and only if for all contexts Γ and terms e with Γ ` e : τ, there exists p ∈ P
with p ? e 6=⊥. The exact definition of exhaustive depends on the built-in types of
the language; a discussion of how this check is done for Futhark can be found in
Section 3.4.

2.3.3 Typing rules

Figure 2.2 gives the typing rules for the language. Note that the conclusion of the
Constr rule enforces a type ascription8; without this ascription, there would be no
way to determine the type of constructors without a more complex typing system (e.g.,

7This follows from the semantics defined by the S-Match rule and the definition of the ? operator.
8This also has the side effect that it’s possible to choose the wrong rule when typing a constructor,

namely Ascrip, and simply get stuck as a result. The Ascrip rule is entirely unnecessary (except for type
documentation purposes)—it’s kept to provide compatibility with the constraint-based rules developed in
Section 2.5.
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as in Section 2.5). A single constructor only gives us information about a single clause
of a sum type: there may be arbitrarily more of them, of which we know nothing.

Γ ` c : const(c)
Const

x : τ ∈ Γ

Γ ` x : τ
Var

Γ ` e : τ

Γ ` (e : τ) : τ
Ascrip

Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` (e1, e2) : (τ1, τ2)
Tuple

Γ, x : τ1 ` e : τ2

Γ ` (λx : τ1 . e) : τ1 → τ2
Fun

Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1

Γ ` e1e2 : τ2
App

Γ ` e1 : τ1 τ2 is a sum type with the clause #id τ1

Γ ` (#id e1 : τ2) : τ2
Constr

Γ ` e : τ1 exhaustive(∪n
i=1{pi}, τ1)

for i ∈ 1 . . . n: bind(pi, τ1) ` pi : τ1 Γ ∪ bind(pi, τ1) ` ei : τ2

Γ ` (match e case p1 → e1 · · · case pn → en) : τ2
Match

Figure 2.2: Monomorphic typing rules.

The bind(pi, τ) ` pi : τ premise of Match ensures that each pattern pi can be
typed against the type of the expression being matched on, i.e., the pattern structurally
matches the expression at the type level.

2.4 Don’t go wrong!

In this section, we’ll prove some basic properties about the type system presented in
the previous section. We want to make sure that the language “doesn’t go wrong” in
the sense that as long as an expression is a well-typed, we have a guarantee that we
can evaluate said expression without things going awry. This is generally referred to
as safety or soundness and boils down to two sub-properties: progress and preservation.
We begin with the progress property.

2.4.1 Progress

Theorem 2.1 formally captures the notion that well-typed terms do not get “stuck”.
That is, for any closed well-typed term of our language, either that term is fully
evaluated (it’s a value) or we can take a step of computation and reduce the term.

Theorem 2.1 (Progress). If ` e : τ then e is a value or there exists an e′ such that e e′.

Proof. By induction on ` e : τ.

Case Const: e = c, which is a value.

Case Var: e = x x : τ ∈ ∅

x : τ ∈ ∅ implies falsity.
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Case Ascrip: e = e′ : τ ` e′ : τ

Invoking the inductive hypothesis on ` e′ : τ, we have two cases to consider:

[e′ = v′]: v′ : τ is a value.

[e′ is not a value and ∃e′′. e′  e′′]: By inversion on CTX, there exists E, e′p, e′′p
such that e′p  p e′′p and e′ = E[e′p], e′′ = E[e′′p ]. By the definition of eval-
uation contexts and CTX, (E : τ)[e′p] (E : τ)[e′′p ], which simplifies to (e′ :
τ) (e′′ : τ).

Case Tuple:

e = (e1, e2) τ = (τ1, τ2) Γ ` e1 : τ1 Γ ` e2 : τ2

(For the remainder of the proof, the inductive hypothesis will be invoked im-
plicitly as required.)

[e1 = v1, e2 = v2]: e = (v1, v2) is a value.

[e1 = v1, e2 is not a value and ∃e′2. e2  e′2]:
Inversion of CTX gives us E, e2,p, e′2,p such that e2 = E[e2,p] and e′2 = E[e′2,p]

and e2,p  p e′2,p. By CTX, (v1, E)[e2,p]  (v1, E)[e′2,p], which can be rewrit-
ten as (v1, e2) (v1, e′2).

[e1, e2 are not values and ∃e′1. e1  e′1]: Analogous to the previous case, using
(E, e2) as the evaluation context.

Case Fun: e = λx : τ1. e′, which is a value.

Case App:

e = e1e2 τ = τ2 Γ ` e1 : τ1 Γ ` e2 : τ1 → τ2

[e = v1v2]: Since Γ ` e2 : τ1 → τ2, by Fun, v1 = λx : τ1. e1 for some e1. Hence,
by S-App and CTX (choosing E = •), (λx : τ1. e1)v2  [x 7→ v2]e1.

[e = v1e2 and ∃e′2. e2  e′2]: Analogous to the second case of the Tuple case.

[e1, e2 are not values and ∃e′1. e1  e′1]: Analogous to the third case of the Tuple

case.

Case Constr:

e = #id e1 : τ2 τ = τ2 τ2 is a sum type with the clause #id τ1 Γ ` e1 : τ1

[e1 = v1]: #id v1 : τ2 is a value.

[e1 is not a value and ∃e′1. e1  e′1]: Analogous to Ascrip with the context #id E.

Case Match:

e = match e′ case p1 → e1 · · · case pn → en Γ ` e′ : τ1

exhaustive(∪n
i=1{pi}, τ1)

[e′ = v′]: The exhaustivity of the patterns guarantees that there is an i with
pi ? v′ = Si 6=⊥. Hence, by S-Match and CTX,

match v′ case p1 → e1 · · · case pn → en  Si(ei)
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[e′ is not a value and ∃e′′. e′  e′′]: Analogous to the Ascrip case with context
match E case p1 → e1 · · · case pn → en.

2.4.2 Preservation

The preservation property states that the  relation preserves the well-typedness of
terms. That is, if a closed term e has type τ before a step of computation, it should
also have the same type τ after a step of computation.

Contextual typing

Proving preservation requires a bit more work due to the use of evaluation contexts.
Specifically, while it is straightforward to prove preservation for primitive steps ( p),
we need a mechanism that allows us to assert the typing properties of a context so
that we can prove preservation for contextual steps ( ). We follow [DJK+18] here
and introduce a contextual typing relation ` E : ψ⇒ τ in Figure 2.3, which asserts that
when E’s hole is filled with an expression e with ` e : ψ, then ` E[e] : τ.

` • : τ ⇒ τ
Hole

` e : τ1 ` E : ψ⇒ τ1 → τ2

` Ee : ψ⇒ τ2
L-App

` v : τ1 → τ2 ` E : ψ⇒ τ1

` vE : ψ⇒ τ2
R-App

` e : τ2 ` E : ψ⇒ τ1

` (E, e) : ψ⇒ (τ1, τ2)
L-Tuple

` v : τ1 ` E : ψ⇒ τ2

` (v, E) : ψ⇒ (τ1, τ2)
R-Tuple

` E : ψ⇒ τ1 τ2 contains the clause #id τ1

` (#id E : τ2) : ψ⇒ τ2
E-Constr

` E : ψ⇒ τ

` (E : τ) : ψ⇒ τ
E-Ascrip

` E : ψ⇒ τ1 exhaustive(∪n
i=1{pi}, τ1)

for i ∈ 1 . . . n: bind(pi, τ1) ` pi : τ1 Γ ∪ bind(pi, τ1) ` ei : τ2

` match E case p1 → e1 · · · case pn → en : ψ⇒ τ2
E-Match

Figure 2.3: Contextual typing rules.

With the contextual typing relation in hand, we can now state and prove a lemma
that allows us pick out a well-typed expression from its evaluation context.

Lemma 2.2. If ` E[e] : τ then there exists a type ψ such that ` E : ψ⇒ τ and ` e : ψ.

Proof. By induction on E.

Case [E = •]: Simply choose ψ = τ.
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Case [E = vE′]: By inversion of App, we have ` v1 : τ1 → τ2 and ` E′[e] : τ1. By the
inductive hypothesis, there’s some type ψ such that ` E′ : ψ ⇒ τ1 and ` e : ψ.
By R-App, ` vE′ : ψ⇒ τ2.

Case [E = E′e′]: By inversion of App, we have ` E′[e] : τ1 → τ2 and ` e′ : τ1. By the
inductive hypothesis, there’s some type ψ such that ` E′ : ψ ⇒ τ1 → τ2 and
` e : ψ. By L-App, ` E′e′ : ψ⇒ τ2.

Case [E = (v, E′)]: By inversion of Tuple, ` v : τ1 and ` E′[e] : τ2. By the inductive
hypothesis, we have ψ such that ` E′ : ψ ⇒ τ2 and ` e : ψ. By R-Tuple,
` (v, E′) : ψ⇒ (τ1, τ2).

Case [E = (E′, e)]: Similar to the E = (v, E′) case.

Case [E = #id E′ : τ]: By inversion of Constr, ` E′[e] : τ1; hence, τ must have a clause
#id τ1. By the inductive hypothesis, ` E′ : ψ ⇒ τ1 and ` e : ψ for some type ψ.
By E-Constr, ` (#id E′ : τ) : ψ⇒ τ, as desired.

Case [E = match E ′case p1 → e1 · · · case pn → en]: Inversion of Match yields

Γ ` E′[e] : τ1 exhaustive(∪n
i=1{pi}, τ1)

for i ∈ 1 . . . n: bind(pi, τ1) ` pi : τ1 Γ ∪ bind(pi, τ1) ` ei : τ2

By the inductive hypothesis, we have an ψ such that ` E′ : ψ ⇒ τ and ` e : ψ.
By E-Match, ` match E ′case p1 → e1 · · · case pn → en : ψ⇒ τ2.

We continue with a lemma that shows that the contextual typing relation behaves
as we intend.

Lemma 2.3. If ` E : ψ⇒ τ and ` e : ψ then ` E[e] : τ.

Proof. By induction on ` E : ψ ⇒ τ. All cases (except for Hole, which follows
immediately by the assumptions) proceed by invoking the inductive hypothesis on
the context E′ which appears in the premise of the given contextual typing rule to
obtain a typing ` E′[e] : τ′. This typing can be used to directly construct the required
typing assertion via the typing rules in Figure 2.2.

We also need a number of results about the typing of expressions under substi-
tution as well as the typing of expressions evaluated under bindings produced by
pattern matches.

Lemma 2.4. If Γ, x : τ1 ` e : τ2 and Γ ` v : τ1 then Γ ` [x 7→ v]e : τ2.

Proof. By induction on Γ, x : τ1 ` e : τ2. For each inductive rule, we use the inductive
hypothesis on the rule’s premises to obtain valid typings with the substitution applied.
The rule itself can then be used to construct Γ ` [x 7→ v]e : τ2, as required.

Corollary 2.5. If Γ, x1 : τ1, . . . , xn : τn ` e : ψ and Γ ` v1 : τ1, . . . , Γ ` vn : τn, then
Γ ` [x1 7→ v1, . . . , xn 7→ vn]e : ψ.

Proof. By induction on n, using Lemma 2.4.
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Lemma 2.6. If p ? e = [x1 7→ e1, . . . , xn 7→ en] = S and Γ ` e : τ, then, for each
i ∈ {1 . . . n}, there exists τi such that Γ ` ei : τi.

Proof. By induction on p.

Case [p = c]: S = ∅, so the statement is vacuously true.

Case [p = x]: S = [x 7→ e]. We need to find a τ′ such that Γ ` e : τ′, so we just choose
τ′ = τ.

Case [p = (p′, p′′)]: By the definition of ?, e = (e′, e′′) where p′ ? e′ = S′ and and
p′′ ? e′′ = S′′. By inversion of Tuple, τ = (τ′, τ′′), Γ ` e′ : τ′ and Γ ` e′′ : τ′′. Let
S′ = [x′1 7→ e′1, . . . , x′r 7→ er] and S′′ = [x′′1 7→ e′′1 , . . . , x′′s 7→ e′′s ]. By the inductive
hypothesis, there exists τ′j and τ′k such that Γ ` e′j : τ′j and Γ ` e′′k : τ′′k for each
j ∈ {1, . . . , r} and k ∈ {1, . . . , s}. Since S = S′ ∪ S′′, we’re done.

Case [p = #id p′]: Immediate by the inductive hypothesis.

Corollary 2.7. If p ? e = [x1 7→ e1, . . . , xn 7→ en] = S and Γ ` e : τ1 and Γ ∪ bind(p, τ) `
e : τ, then Γ ` S(e) : τ2.

Proof. By Lemma 2.6, for each i ∈ {1 . . . n}, there exists τi such that Γ ` ei : τi. By
Corollary 2.5 and the definition of bind, Γ ` S(e) : τ2.

Finally, we move on to the meat of the matter: preservation. Since all computation
boils down to function application and match reduction, the crux of the result hinges
on proving preservation under primitive reduction. Preservation under general re-
duction follows readily thereafter.

Lemma 2.8 (Primitive preservation). If ` e : τ and e p e′ then ` e′ : τ.

Proof. By induction on e p e′.

Case S-App:

e = (λx : τ1. e′′)v τ = τ2 e′ = [x 7→ v]e′′

By inversion on ` (λx : τ1. e′′)v : τ (via App), we have ` λx : τ1. e′′ : τ1 → τ2 and
` v : τ1. By inversion (via Fun), x : τ1 ` e′′ : τ2. By Lemma 2.4, ` [x 7→ v]e′′ : τ2.

Case S-Match:

pi ? v = Si e = match v case p1 → e1 · · · case pn → en τ = τ2 e′ = Si(ei)

By inversion on ` e = match v case p1 → e1 · · · case pn → en : τ2 (via Match),
we have ` v : τ1 and bind(pi) ` ei : τ2 for each i ∈ 1 . . . n. By Corollary 2.7,
` Si(ei) : τ2.

Theorem 2.9 (Preservation). If ` e : τ and e e′ then ` e′ : τ.

Proof. By inversion on e  e′ (via CTX), there exists E, ep, e′p such that ep  e′p, e =
E[ep], and e′ = E[e′p]. By Lemma 2.2, there exists a type ψ such that ` E : ψ ⇒ τ and
` ep : ψ. By Lemma 2.8, ` e′p : ψ. By Lemma 2.3, ` e′ : τ.

Corollary 2.10. If ` e : τ and e1  e2  · · · en then ` en : τ.

Proof. Straightforward induction on n (with n = 2 as the base case).
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2.4.3 Soundness

We now have all the necessary results to prove our goal: things shouldn’t go wrong!

Theorem 2.11 (Soundness). If ` e1 : τ and e1  e2  · · ·  en, then en is a value or
there exists en+1 such that en  en+1.

Proof. By induction on n. The base case (with n = 2) is immediate by Theorem 2.1.
For the inductive case, the inductive hypothesis gives us that en is either a value or
can take another step of computation. By Corollary 2.10, ` en : τ and, by Theorem 2.1,
we’re done.

2.5 Constraint-based typing

In this section, we augment the monomorphic type system of Section 2.3 into a
constraint-based system that more closely matches Futhark’s type system with respect
to its type checking/inference algorithms.

The type system is based on the Damas-Milner [DM82] (also known as Hindley-
Milner) type system. The system uses type variables and constraints on these variables
to resolve a term’s type. Note that this is distinct from the type variables in a calculus
like System F in that the type variables are strictly introduced by the type checking
mechanisms and are never bound.9 To put things simply: type variables never appear
in programs.10

2.5.1 Type variables

The first thing to do is extend the types from Section 2.1.1 with type variables:

τ ::= · · ·
| α type variable

We let α, β and γ range over type variables.

Freshness

We also introduce the concept of variable freshness. When the constraint-based system
introduces a type variable, there needs to be a guarantee that the variable is fresh—i.e.,
that the variable appears in no other constraints or types. If the variable is not fresh,
then it’s possible to inadvertently establish relationships between types that do not in
fact exist. (Or worse, end up with infinite types!) We leave the details abstract and just
assume we have a fresh supply of variables and we write “α fresh” when we want to
assert that α was taken from this fresh supply.11

9The Damas-Milner system is commonly presented with type schemes that do allow quantification over
type variables, but this quantification is restricted to let-expressions (and exists to enable polymorphism)
and is not equivalent to System F’s universal quantification.

10Or, at the very least, it’s considered an error (although there are no formal checks in place).
11It’s actually simple to iron out the details here: one approach is to simply track the used variables from

the type variable set. But, these details aren’t particularly interesting and make for busier notation. Another
approach is to simply assume a fresh variable stack that contains no repeated entries, which is essentially
how this presentation proceeds.
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2.5.2 Constraints

A constraint is simply an equality between two types. A constraint set is a set of such
equalitites:

{τi = σi | i ∈ 1 . . . n}

Substitutions

With the introduction of type variables, we naturally also introduce type substitutions.
Type substitutions are of the same stuff as term substitutions in Section 2.1.3, except
we’ll use use R instead of S when referring to them and they operate on type variables
instead of term variables. As with terms, they work as one would expect on types:

R(t) = t

R(τ1 → τ2) = R(τ1)→ R(τ2)

R(τ1, τ2) = (T(τ1), R(τ2))

R(#id1 τ1 | · · · | #idn τn) = #id1 R(τ1) | · · · | #idn R(τn)

R(α) =

{
τ if [α 7→ τ] ∈ R for some τ

α otherwise

and on typing contexts:

R([x1 7→ τ1, . . . , xn 7→ τn]) = [x1 7→ R(τ1), . . . , xn 7→ R(τn)]

We also allow type substitutions to operate on terms, substituting the types in func-
tions and type ascriptions:

R(c) = c

R(x) = x

R(e : τ) = R(e) : R(τ)

R(e1, e2) = (R(e1), R(e2))

R(λx : τ. e) = λx : R(τ). R(e)

R(e1e2) = R(e1)R(e2)

R(#id e) = #id R(e)

R(match e case p1 → e1 · · · case pn → en) = match R(e) case p1 → R(e1) · · · case pn → R(en)

We say that a type substitution R unifies a constraint set {τi = σi | i ∈ 1 . . . n} if
R(τi) = R(σi) for all i. R resolves the constraint set if it unifies the set and each
constraint R(τi) = R(σi) contains no type variables.

2.5.3 Typing relation

Since we’re using a constraint-based DM type system, we extend our standard three-
place relation to one involving constraints. A constrained typing relation augments the
typing relation from Section 2.3.1 with a set of constraints C, written

Γ ` x : τ ‖ C

which can be understood as the term x having type τ under environment Γ subject to
the constraints in C. That is, if there is a substitution R that unifies C, then x : R(τ)
under environment R(Γ).
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2.5.4 Binding pattern variables

The definition of bind in Section 2.3.2 won’t work under the constrained typing re-
lation: it relies on the structure of types, which may be unknown in the presence of
type variables. Fortunately, the solution is simple. In our definition of bind for the
constrained relation—which we’ll call cbind—we just generate a fresh type variable
for each term variable in a pattern and add it to the context. The typing rules will
automatically generate constraints on the fresh type variables to ensure that they have
the correct types. cbind is defined as:

cbind(p) =


{x : α} p = x, α fresh
cbind(p1) ∪ cbind(p2) p = (p1, p2)

cbind(p′) p = #idp p′

∅ otherwise

2.5.5 Typing rules

Figure 2.4 gives the typing rules for the constraint-based system. Each rule may gen-
erate type constraints. Typing an expression using the rules yields a type and a set
of constraints. A suitable unification algorithm then returns a substitution R that
resolves the constraint set (or fails).

Γ ` c : const(c) ‖ ∅
C-Const

x : τ1 ∈ Γ

Γ ` x : τ2 ‖ {τ1 = τ2}
C-Var

Γ ` e : τ2 ‖ C
Γ ` (e : τ1) : τ1 ‖ {τ1 = τ2} ∪ C

C-Ascrip

Γ ` e1 : τ1 ‖ C1 Γ ` e2 : τ2 ‖ C2

Γ ` (e1, e2) : (τ1, τ2) ‖ C1 ∪ C2
C-Tuple

Γ, x : τ1 ` e : τ2 ‖ C
Γ ` (λx : τ1 . e) : τ1 → τ2 ‖ C

C-Fun

Γ ` e1 : τ1 ‖ C1 Γ ` e2 : τ2 ‖ C2 α fresh

Γ ` e1e2 : α ‖ C1 ∪ C2 ∪ {τ1 = τ2 → α}
C-App

Γ ` e : τ ‖ C α, β fresh

Γ ` (#id e) : α ‖ {α = #id τ | β} ∪ C
C-Constr

Γ ` e : τ ‖ C α fresh Ce = {true = exhaustive(∪n
i=1{pi}, τ)}

for each i ∈ 1 . . . n:
cbind(pi) ` pi : τ ‖ Ci Γ ∪ cbind(pi) ` ei : α ‖ C′i

Γ ` (match e case p1 → e1 · · · case pn → en) : α ‖ C ∪ (∪n
i=1Ci ∪ C′i) ∪ Ce

C-Match

Figure 2.4: Constraint-based typing rules.
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The C-Var rule and cbind

It may seem odd that C-Var wasn’t defined as

x : τ ∈ Γ

Γ ` x : τ ‖ ∅

The reason for the current definition is that, without the added τ1 = τ2 constraint,
cbind would fail to establish a relationship between the generated type variables
for pattern variables and the types of the variables that the variables bind to. The
cbind(pi) ` pi : τ ‖ Ci premise in C-Match generates constraints that tie the types of
pi’s variables to τ, where τ is the type of the expression being matched upon, thereby
simplifying the definition of cbind.

Constructor ascriptions

A key point in typing terms involving sum types is that the structure of a sum type
may only be partially known at any given time. We represent this partial knowledge
via constraints12; the constraint

{α = #id τ1 | β} (2.1)

from the C-Constr rule constrains α to be a sum type with the clause #id τ1 and addi-
tional, currently unknown, clauses β. Note that the | operator is both associative and
commutative, hence the order in which the constraints are constructed is immaterial.
Unlike in the Constr rule, a type ascription is not required in the C-Constr rule.
Instead, the constraint in Equation (2.1) allows the type system to delay resolving β
(and hence α) until later. Without type variables, the full sum type must be known to
construct a valid typing (which is why the Constr rule requires an ascription).

The generated constructor constraints require at least one base truth to fully resolve
the unknown β variable against. This means that there must exist a constraint that
relates the sum type type variables to a fully resolved sum type. Such a constraint
is introduced by a type ascription (including ascriptions in function binders). Even
with the constraint-based typing, there must be at least one sum type ascription in the
source program. But, the constraint-based system frees the programmer from writing
redundant ascriptions for sum types. Section 4.4 discusses true polymorphic sum
types, which allow for ascriptionless programs.

On the note of redundant ascriptions, C-Fun could have alternatively been defined
as

Γ, x : α ` e : τ ‖ C α fresh

Γ ` (λx . e) : α→ τ ‖ C

(with the addition of ascriptionless functions to our terms grammar) freeing the pro-
grammer from yet further unnecessary ascriptions, while also permitting function
polymorphism (since the bound variable is no longer tied to an explicit type). We
forgo this modified typing rule to simplify the proof of soundness for the constraint-
based system. (We want to maintain as much similarity as possible between the
monomorphic and constraint-based systems.)

12Row variables [Wan, Gar03] are commonly used for this purpose.

17



The exhaustivity check

In the C-Match rule, the exhaustive check from Match is included as a constraint
instead of a premise. This notation is somewhat sloppy: strictly speaking, exhaustive
is a predicate, and its codomain isn’t (necessarily) in the set of types. (And our analysis
doesn’t assume the existence of booleans either.) At any rate, the necessary technical
adjustments here are straightforward and few. Another possibility would be to extend
the constraint-based relation to a five-place relation that included a place for a set of
exhaustive predicates.

This change to the exhaustivity predicate is required because the type passed to
exhaustive may not be fully resolved until later. For the same reason, the Futhark
compiler performs a pattern exhaustivity check only after the type checking phase
has resolved all types, see Section 3.4.

2.5.6 Soundness of the constraint-based system

Adding type ascriptions

As we did for the monomorphic type system of Section 2.3, we’d like to assert that the
constraint-based system is sound. To do so, we’ll show that terms that are well-typed
under the constraint-based relation are also well-typed under the standard typing re-
lation from Section 2.3.1. Unfortunately, there’s a problem! Not all programs that
are well-typed under the constraint-based relation are well-typed under the standard
typing relation. The issue is the removal of the type ascription requirement in the
C-Constr rule, which increases the set of programs that are well-typed under the
constraint-based relation. What is necessary is a transformation that adds type ascrip-
tions to constructors, which we call add:

add(#id e : τ) = (#id add(e)) : τ

add(#id e) = (#id add(e)) : α (α fresh)

add(λx : τ. e) = λx : τ. add(e)

add(e : τ) = add(e) : τ

add((e1, e2)) = (add(e1), add(e2))

add(e1e2) = (add(e1)add(e2))

add(match e case p1 → e1 · · · case pn → en) = match add(e) case p1 → add(e1) · · · case pn → add(en)

add(e) = e

Of course, we want to make sure that add preserves typing:

Lemma 2.12. If Γ ` e : τ ‖ C then Γ ` add(e) : τ ‖ C.

Proof. By induction on Γ ` e : τ ‖ C. All cases except C-Constr just involve invoking
the inductive hypothesis (where applicable) and then applying that case’s typing rule.

Case C-Constr:

e = #id e′ τ = α C = {α = #id τ | β} ∪ C′ Γ ` e′ : τ ‖ C′

By the inductive hypothesis, Γ ` add(e′) : τ ‖ C′. By C-Constr,

Γ ` (#id add(e′)) : α ‖ {α = #id τ | β} ∪ C′
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By C-Ascrip,

Γ ` ((#id add(e′)) : α) : α ‖ {α = α} ∪ {α = #id τ | β} ∪ C′

By the definition of add,

Γ ` add(#id e′) : α ‖ {α = α} ∪ {α = #id τ | β} ∪ C′

And since {α = α} is trivially satisfied by any substitution,

Γ ` add(#id e′) : α ‖ {α = #id τ | β} ∪ C′

which is just Γ ` add(#id e′) : α ‖ C.

We are being sloppy with the generated fresh type variables here: there are no
guarantees that the fresh variables chosen for building the Γ ` e : τ ‖ C relation will
be the same for Γ ` add(e) : τ ‖ C the relation. That is, the two constraint sets, types,
and typing contexts could differ up to variable names. But, since the two generated
constraint sets are structurally identical (after removal of superfluous constraints like
α = α), variable renaming is straightforward and we assume any necessary renaming
is done behind the scenes.

With add in hand, we can now show that well-typed terms under the constraint-
based relation are well-typed under the standard relation, if constraints are annotated
with types.

Theorem 2.13. Suppose that Γ ` e : τ ‖ C. If R resolves C, then R(Γ) ` R(add(e)) : R(τ).

Proof. By induction on Γ ` e : τ ‖ C.

Case C-Const:

e = c τ = const(c) C = ∅

Since R(c) = c, R(const(c)) = const(c) and add(c) = c, R(Γ) ` R(add(c)) :
R(const(c)) by Const.

Case C-Var:

e = x τ = τ2 C = {τ1 = τ2} x : τ1 ∈ Γ

Since x : τ1 ∈ Γ, R(x : τ1) ∈ R(Γ). By Var, R(Γ) ` R(add(x)) : R(τ1).

Case C-Ascrip:

e = e′ : τ1 τ = τ1 C = {τ1 = τ2} ∪ C′ Γ ` e′ : τ2 ‖ C′

By the inductive hypothesis, if R′ resolves C′, then R′(Γ) ` R′(add(e′)) : R′(τ2).
Since C′ ⊂ C, any resolver for C must also resolve C′. Hence, R(Γ) ` R(add(e′)) :
R(τ2) and, because R(τ1) = R(τ2), we have R(Γ) ` R(add(e′)) : R(τ1). By
Ascrip and the definition of add, R(Γ) ` R(add(e′ : τ1)) : R(τ1).

Case C-Tuple:

e = (e1, e2) τ = (τ1, τ2) C = C1 ∪ C2 Γ ` e1 : τ1 ‖ C1

Γ ` e2 : τ2 ‖ C2

Since C = C1 ∪ C2, if R resolves C then R must also resolve C1 and C2. By the
inductive hypothesis, R(Γ) ` R(add(e1)) : R(τ1) and R(Γ) ` R(add(e2)) : R(τ2).
By Tuple, R(Γ) ` R(add((e1, e2)) : R(τ1, τ2).
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Case C-Fun:

e = λx : τ1. e τ = τ1 → τ2 Γ, x : τ1 ` e : τ2 ‖ C

By the inductive hypothesis, R(Γ, x : τ1) ` R(add(e)) : R(τ2). By Fun, R(Γ) `
λx : R(τ1). R(add(e)) : R(τ1) → R(τ2) which can be rewritten as R(Γ) `
R(add(λx : τ1. e)) : R(τ1 → τ2).

Case C-App:

e = e1e2 τ = τ3 C = C1 ∪ C2 ∪ {τ1 = τ2 → τ3} Γ ` e1 : τ1 ‖ C1

Γ ` e2 : τ2 ‖ C2

By the inductive hypothesis (and the fact that R must also resolve C1 and C2
separately), R(Γ) ` R(add(e1)) : R(τ1) and R(Γ) ` R(add(e2)) : R(τ2). Addition-
ally, R(τ1) = R(τ2) → R(τ3), so R(Γ) ` R(add(e1)) : R(τ2) → R(τ3). By App,
R(Γ) ` R(add(e1e2)) : R(τ3).

Case C-Constr:

e = #id e′ τ = α C = {α = #id τ′ | β} ∪ C Γ ` e : τ ‖ C

By the inductive hypothesis, R(Γ) ` R(add(e′)) : R(τ′). Since R resolves C,
R(α) = R(#id τ′ | β) = #id R(τ′) | R(β). Since R(α) is a sum type with a
#id R(τ′) clause, by Constr, R(Γ) ` (#id add(e′) : R(α)) : R(α). We can pull
R outside of the constructor term: R(Γ) ` R(#id add(e′) : α) : R(α) and by the
definition of add have R(Γ) ` R(add(#id e′)) : R(α).

Case C-Match:

e = match e′ case p1 → e1 · · · case pn → en τ = α

Ce = {true = exhaustive(∪n
i=1{pi}, τ′)} C = C ∪ (∪n

i=1Ci ∪ C′i) ∪ Ce

Γ ` e′ : τ′ ‖ C

for each i ∈ 1 . . . n: cbind(pi) ` pi : τ′ ‖ Ci Γ ∪ cbind(pi) ` ei : α ‖ C′i

The inductive hypothesis gives R(Γ) ` add(e′) : R(τ′), R(cbind(pi)) ` R(add(pi)) :
R(τ′), and R(Γ ∪ cbind(pi)) ` R(add(ei)) : R(α). By C-Match,

R(Γ) ` R(add((match e′ case p1 → e1 · · · case pn → en)) : R(α)

(Note that R(add(pi)) = pi, since patterns don’t have type ascriptions.)

Theorem 2.14 (Soundness). If ` e1 : τ ‖ C, C has a resolver R and R(add(e1))  
e2  · · · en, then en is a value or there exists en+1 such that add(en) add(en+1).

Proof. By Lemma 2.12, ` add(e) : τ ‖ C. By Theorem 2.13, ` R(add(e)) : R(τ). By
Theorem 2.11, we’re done.
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2.5.7 Unification

The typing rules in Figure 2.4 are only half of the type inference story: the generated
constraint set still needs to be solved in order to resolve the type variables in a typing
relation. Solving this constraint set is called unification. In the constraint-based sys-
tem, syntactic unification, as first described in [Rob65], is generally sufficient to build
a unifying substitution. There is one issue: sum type constraints involving the | op-
erator cannot be solved by a syntactic unifier. The issue lies in the associativity and
commutativity of |. For example, the constraint

#a τa | α = #b τb | β

cannot be solved syntactically because it’s impossible to make the left side match
the right side in a syntactical sense, even if the types are equal due to the algebraic
properties of |.13 Our out here is to allow equality modulo some algebraic property;
unifiers of such constraint sets are called equational unifiers [BS01]. We construct a set
E of algebraic identities that | obeys:

E = {#a τa | #b τb = #b τb | #a τa, (#a τa | #b τb) | #c τc = #a τa | (#b τb | #c τc)}

and then modify our constraint to be equal modulo E (meaning, up to the identities in
the set E), which we denote with =E:

#a τa | α =E #b τb | β (2.2)

By relaxing our constraints in Figure 2.4 to be equal module E instead of simply equal,
we obtain a constraint set that can be solved by an equational unification algorithm.

2.5.8 A note on polymorphism

A clarification is in order: while the DM type system is often used polymorphically
(via let-polymorphism), the current type system is a monomorphic system, aside from
the constructor polymorphism introduced by the C-Constr rule in Figure 2.4.

The C-Constr rule means that constructors are typed polymorphically; however,
as previously discussed, the only way to fully resolve a sum type (i.e., the α type vari-
able appearing in the C-Constr rule) is via a type ascription. This means that while
constructors are polymorphic, expressions that operate on sum types (i.e., functions
and matches) end up being monomorphic in regards to sum types because the type as-
cription concretely determines the type these expressions operate on. Constructors are
typed polymorphically as a necessary consequence of generating useful constraints in
the type reconstruction process.

13It is interesting to note that symbolic unification works fine on types constructed with the function type
operator →. The reason for this is that the → operator is neither associative nor commutative, so in the
unification of the constraint τ1 → τ2 = τ3 → τ4, τ1 and τ3 may be structurally compared. This luxury is
unavailable for constraints of the form #id1 τ1|α1 = #id2 τ2|α2, where τ1 and τ2 may only be compared if
id1 = id2 (otherwise, the constructor corresponding to #id1 may be somewhere in α2, if at all).
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Chapter 3

Implementation

3.1 Overview

This chapter covers the implementation of sum types in the Futhark compiler, which
is written in the Haskell14 programming language. The implementation consists of
three main parts:

1. Extending Futhark’s syntax

2. Type checking

3. Conversion to Futhark’s intermediate representation (internalization)

In the subsequent sections, we’ll examine each of these areas of the implementation.

3.2 Syntax

3.2.1 A few differences and a few specifics

Futhark’s sum type syntax largely mirrors that of the small language introduced in
Section 2.1, but features a number of significant differences. First, sum types and
constructors are generalized to be k-ary instead of strictly 1-ary:15

τ ::= · · ·
| #id1 τ1

1 · · · τ1
k1
| · · · | #idn τn

1 · · · τn
kn

sum type

e ::= · · ·
| #id e1 · · · ek constructor

Under this specification, 0-ary constructors are permitted, i.e., enumerations. Futhark
also features parametric type abbreviations which enables the programmer to give al-
ternative names to types and, via type application, fill-in any type parameters. For
example,

option α = #some α | #none
14https://www.haskell.org/
15For continuity, we continue using the notation developed in Chapter 2. Technically, τ now refers to

Futhark’s type grammar and not the grammar in Section 2.1.1. For didactic reasons, the presentation
is only an approximation of the actual Futhark language. See https://futhark.readthedocs.io/en/
latest/language-reference.html for an up-to-date full specification.

22

https://futhark.readthedocs.io/en/latest/language-reference.html
https://futhark.readthedocs.io/en/latest/language-reference.html


defines the type abbreviation option which accepts one type parameter; e.g., option τ
is equivalent to #some τ | #none. Match-expressions and constructors are syntactically
identical to the theoretical treatment.

As in the theory chapter, recursive types are disallowed as well and—also as in
the theory chapter—Futhark’s type system is entirely structurally typed. This means
that constructors exist in the global namespace. All constructors are always in scope.
As a consequence, unlike many functional programming languages with sum types,
partial application of constructors is forbidden in Futhark: a k-ary constructor must be
initialized with exactly k arguments. (Getting partial application right in a structural
type system is no easy task!)

3.2.2 Parsing and internal representation

Futhark’s parser is generated via the Happy16 parser generator. Happy produces a
parser by reading a grammar specification of the language; adding support for sum
types amounted to extending the grammar in a straightforward fashion and defining
the relevant abstract syntax tree (AST) extensions in the Futhark compiler.

Sum types in the AST

In this section we’ll take a look at how the Futhark compiler represents sum types.
The Haskell snippets in this section are approximation only—they’ve been simplified
for didactic purposes. Figure 3.1 below shows the (simplified) primary modifications
to Futhark’s AST types.

data Type = ... | Sum (Map Name [Type])

data Exp = ... | Constr Name [Exp] Type
| Match Exp [(Pattern, Exp)] Type

data Pattern = TuplePattern [Pattern]
| RecordPattern [(Name, Pattern)]
| PatternParens Pattern
| Id Pattern
| Wildcard Pattern
| PatternAscription Pattern Type
| PatternLit Exp Type
| PatternConstr Name Type [Pattern]

Figure 3.1: Sum type additions to Futhark’s AST types. The Name type is approximate
to the set of labels L in Section 2.1.1. Only the PatternLit and PatternConstr con-
structors were added as part of adding sum type support to Futhark; the remaining
Pattern constructors were already present in the code base.

Sum types are internally represented as a mapping between constructor labels and
a list of types.17 This is a natural fit for sum types: each clause is disjoint from the

16https://www.haskell.org/happy/
17This list of types cannot be arbitrarily long; while Section 3.2.1 described Futhark as supporting k-array

sum types, in reality this is only true for k ≤ 256 due to the tagging mechanism; see Section 2.3 for details.
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rest and the map enables convenient look-up for the typing checking phase of the
compiler.

Prior to the addition of sum types, Futhark exclusively supported irrefutable pat-
terns; i.e., patterns that cannot fail to match a value and are represented by the first
six pattern constructors in Figure 3.1. (These patterns would appear in let-expressions
and functions.) The addition of match-expressions and constructors expanded the set
of applicable patterns to include the PatternLit constructor (when we want to match
on an exact value) as well as the PatternConstr (constructors whose fields are re-
placed with patterns, similar to Section 2.1.4). These new patterns (or patterns featur-
ing these patterns as sub-patterns) can fail to match a value. This is because both of
these new pattern constructors involve fixed values that only some values of a certain
type may match with. To address pattern failures, a pattern exhaustivity checker was
added to Futhark (Section 3.4).

3.3 Type checking

3.3.1 Constraints and unification

Futhark uses a constraint-based Damas-Milner type system, similar to that of Sec-
tion 2.5. Unlike in Section 2.5, there is no hard distinction between type inference/constraint-
generation and unification: constraints are solved on an ad-hoc basis rather than being
accumulated all at once.

The basis of Futhark’s constraints is its Constraint type, which expresses a cer-
tain constraint on a given type variable. A number of constructors from this type
are shown below (to demonstrate the variety of possible constraints), including the
HasConstrs constraint that was added to support type checking sum types.

data Constraint = ... | Constraint Type
| Equality
| HasConstrs (Map Name [Type])

As an example, if a type variable has a Constraint t constraint, the type variable
is constrained to have type t (i.e., t may be substituted in place of the type variable).
The Equality constraint constrains a type variable to be a type that supports equality.
The new HasConstrs m constraint approximates the equational constraint in Equa-
tion (2.2) and enforces that a type variable is a sum type and that it has at least the
clauses described by the map m.

Sum type unification between two types t1 and t2 can be split into three scenarios,
depending on the types being unified (i.e., explicit sum types or type variables) and,
in the case of type variables, the constraints on them. Note that before two types are
unified, any existing type substitutions (including those specified by a Constraint
constraint) are applied to both types.

1. (t1 is a type variable and t2 is a sum type): If t1 has a HasConstrs constraint,
all clauses in the constraint must be present in the sum type. If so, t1 is mapped
to t2, and t2 and substituted for t1 in the existing constraint set. If t1 has
other constraints that conflict with unification with a sum type, unification fails
and the type checker signals an error. If t1 has no other constraints, it’s simply
mapped to t2 without checking for clause presence in t2.
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2. (t1 and t2 are type variables): In the unification of two distinct type variables
both constrained by a HasConstrs constraint, the constraint is updated to include
the intersection of the two constraint sets and one type variable is mapped to the
other. In the case of incompatible constraints, unification fails.

3. (t1 and t2 are sum types): Two explicit sum types are unified by equality, up to
clause re-ordering.

3.3.2 Another note on polymorphism

The comments in Section 2.5.8 apply equally well to Futhark. Namely, the polymor-
phic nature of the HasConstrs constraint means that while constructors can be used
polymorphically in Futhark, any sum type acceptors (e.g., matches and functions) are
monomorphic in regard to sum types. Additionally, as in the theoretical development,
any program that includes constructors must feature a type ascription at some point.
Without such an ascription, there is no sum type that type variables with a HasConstrs
constraint can resolve against.

This restriction can be lifted somewhat in the case of match-expressions: in lieu of
a type ascription, the compiler can construct a sum type from the constructor patterns
being matched on. For example, from the match

match x
case #a 5 -> e1
case #b (1, 2) -> e2
case #c false -> e3
case #d -> e4

the compiler could infer that

x : #a i32 | #b (i32, i32) | #c bool | #d

by simply merging the HasConstrs constraints of each constructor pattern into a sum
type. This sort of inference is safe: if the programmer forgets a constructor in the
match expression, that constructor will pop-up elsewhere in the program and a type
error will be signaled by the compiler. Futhark does not currently support this sort of
sum type inference, but could with only minimal modification to its type system.

3.4 Pattern exhaustivity

Futhark disallows inexhaustive pattern matches in match-expressions and performs
an exhaustivity check after type checking (type information must be known to check
pattern exhaustivity) to enforce exhaustive matches. Before sum types, Futhark only
supported irrefutable patterns where a successful match is guaranteed by the type
system and is not dependent upon values. In the presence of literal and construc-
tor patterns, we now must exhaustively check the cases of a match-expression for
complete coverage of the value space of the type being matched on.

The exhaustive check involves splitting the patterns of a match’s cases into vertical
columns and ensuring that each column is exhaustive. For constructors, this involves
ensuring that there is a corresponding case for each clause of the sum type. For literal
values, either all possibilities must be present (e.g., true and false for booleans)
or a catch-all pattern must be present (e.g., for numeric types). If patterns consist
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of sub-patterns, the sub-patterns themselves are also checked for exhaustivity. To
illustrate, we’ll run through the action of the exhaustivity checker on the example
match-expression in Figure 3.2.

type option 'a = #some a | #none

type mytype = #a (i32, (i32, i32)) (option i32) | #b i32 i32

match (#b 1 2 : mytype)

case #a (1, (2, 3)) (#some 1) -> ...

case #a (4, (5, x)) (#some 2) -> ...

case #a (_, (6, _)) (#some _) -> ...
case #b x 1 -> ...
case #b _ 2 -> ...

Figure 3.2: Illustration of exhaustive pattern matching in the compiler. Each box rep-
resents a “column" of patterns being checked for exhaustivity. Nested boxes illustrate
calls of the checker on sub-patterns. i32 is a 32-bit integer type.

The exhaustivity checker is run left-to-right on each vertical column of patterns in
the match’s cases, shown by the blue boxes in the figure. Field patterns are grouped
by constructor: patterns belonging to distinct constructors are separated. This is why
the patterns matching on the first field of the #a constructor are boxed separately from
the patterns matching the first field of the #b constructor, despite being in the same
vertical column.

First, the constructors in the first blue box are checked for exhaustivity. Since the
match is on a value of type mytype, the compiler checks that there is at least one
row with an #a constructor and at least one row with a #b constructor. There is, so
the check moves to the next column to the right. Before the checker checks the next
column, it records the current pattern context: in this case, either (#a _ _) or (#b _ _).
As the moves left-to-right (and descends into sub-patterns), it builds a pattern context
in order to report meaningful errors to the user.

After checking the constructor column, the checker moves right to the blue box
surrounding field patterns corresponding to the #a constructor’s first field of type
(i32, (i32, i32)). Here, the checker descends into the sub-patterns which make
up the pair pattern. In one of the sub-patterns, the checker detects a missing catch-
all pattern (since 2, 5 and 6 cannot match all integers) and outputs the the pattern
context (#a (_, (p, _)) _) to the programmer with an error. See Figure 3.3 below
for the complete output generated by the checker on the example match.

(#a (_, (p, _)) _) where p is not one of [2, 5, 6]
(#a _ #none )
(#b _ p) where p is not one of [1, 2]

Figure 3.3: The missing pattern matches reported for the match in Figure 3.2.

Upon detection of a missing pattern, the checker does not check further sub-
patterns of the current pattern (as resolution of the current missing pattern may make
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all sub-patterns trivially exhaustive), but it does continue in its left-to-right traver-
sal and checks for further missing patterns. As the checker continues in the fashion
described it generates two further errors, as shown in Figure 3.3.

The exhaustivity checker described in this section is closely related to the pattern
match compiler described by Sestoft [Ses96]. Indeed—as Sestoft shows—checking
patterns for exhaustivity and compiling matches can be accomplished with the exact
same algorithm. Section 4.3.1 describes a scheme to transform Futhark’s matches in
a method closely resembling the exhaustivity checker in this section, further demon-
strating the connection between pattern compilation and pattern exhaustivity check-
ing.

Eliminating redundant cases

The exhaustivity machinery may be modified in a straightforward manner to also re-
port redundant cases in matches (this is not yet implemented in the compiler). For
each column checked, the checker can add any rows with overlapping entries (e.g.,

the column

x
4
4

 contains multiple overlapping entries: since x matches anything, it

overlaps with both 4 entries, and the 4 entries overlap with each other) to an over-
lapping set and remove rows from the set which no longer overlap given the current
column. After checking is complete, any rows that remain in the overlapping set must
be redundant.

3.5 Internalization

This phase of the compiler involves transforming source programs written in Futhark
to an intermediate representation (IR) called the core language. A number of compiler
passes are performed on the parsed AST in preparation for IR transformation, includ-
ing a defunctorization pass for transforming away modules, a monomorphization pass,
and a defunctionalization [HHE18] pass for Futhark’s higher-order functions.

3.5.1 The monomorphization pass

The first compiler pass we’re concerned with is monomorphization. Monomorphiza-
tion replaces polymorphic function calls with an equivalent monomorphic function,
with any type variables in the polymorphic function replaced by concrete types.18

Adding match-expression support here is straightforward: the existing transforma-
tion logic is simply called on the sub-expressions of the match-expression.

Constructor removal

Constructor expressions are simply a way to “package” existing data. Tuples act much
the same in this regard19 with the exception that constructor expressions are tagged
in the form of an identifier. However, we can emulate the identifier tag in a tuple
by simply setting the first element of the tuple to a numeric representation of the

18The monomorphization pass also does some other housekeeping, including expanding record variables
into record patterns and removal of unreachable functions.

19At least when partial application isn’t allowed!
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identifier, given by a function f : L → Z. This gives rise to the following constructor-
to-tuple transformation

#id e1 · · · en =⇒ ( f (id), e1, . . . , en)

In practice, the function f is quite easy to define: simply sort the constructors of
a sum type (by sorting the labels of their constructors) and assign each a number
based on its sorted position—given a constructor #id, f (id) returns its assigned num-
ber. For example, assuming a lexicographic-based sorting function sort and a type
option τ = #some τ | #none for a type τ,

sort(option) = #none | #some τ

f (none) = 0

f (some) = 1

This scheme works fine for Futhark because constructors are monomorphic after
type inference has filled in all type information, so all constructors for a given type
are known. In languages with polymorphic sum types, defining a function f isn’t
quite as simple because not all constructors may be known—a hash function with a
reasonably low collision rate does the trick [Gar98].20

A problem with the transformation

Compare the transformation of #some x and #none:

#some x =⇒ ( f (some), x)

#none =⇒ ( f (none))

Notice that the two transformations differ structurally. Transforming constructors
with the transformation as-is yields ill-typed expressions (e.g., when matching on
a constructor). In order to ensure structural similarity, each constructor is instead
translated into a tuple of tuples which has fields for every constructor of the sum type.
All such fields must be populated by values, so fields of other constructors are simply
filled with default values synthesized by a function d : T → E , which returns some
default value for any type τ ∈ T . Such a function is simple to define: the actual value
itself is immaterial, all that matters is that some value (of the correct type) exists as
a placeholder. For example, a reasonable default value for a numeric type is simply
0. Using d we can define a function dc which constructs default place-holder tuple
representing these fields: 21

dc(#idi τ1 · · · τki
) =


() ki = 0
d(τ1) ki = 1
(d(τ1), . . . , d(τki

)) otherwise

The transformation of #idi e1 · · · eki
with sorted type #id1 τ1

1 · · · τ1
k1
| · · · | #idn τn

1 · · · τn
kn

now becomes

#idi e1 · · · eki
=⇒

(
f (idi), dc(#id1 τ1

1 · · · τ1
k1
), . . . , (e1, . . . , eki

), . . . , dc(#idn τn
1 · · · τn

kn
)
)

20A collision is easily detectable by the compiler, which could either correct the collision by internally
search-and-replacing the constructor name, or simply signal an error to the user.

21In practice, no entry is needed for 0-ary constructors. Setting the entry to () just simplifies the presen-
tation.
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With this modified transformation, our example transformation becomes (recalling
that both constructors have type option τ)

#some x =⇒ (1, (), x)

#none =⇒ (0, (), d(τ))

We perform a very similar transformation for constructor patterns, the difference
being that in lieu of default values, we replace fields for other constructors with wild-
card patterns. This is reassuring—default values can’t matter if they’re simply ignored
by patterns they’re matched against!

The constructor transformation is desirable because a) it simplifies the core lan-
guage of the compiler and—with the appropriate match-expression transformation—
is semantically equivalent and b) it’s quite simple to implement. Unfortunately, the
transformation is rather inefficient: the larger the sum type, the greater the overhead,
regardless of the size of the constructor being translated. In Section 4.2, we’ll discuss
a modification that lets us trim down the transformation.

Since the monomorphization pass is the first post type checking pass that the com-
piler does on expressions, it’s an opportune time to apply the constructor-to-tuple
transformation. (Otherwise, we have to add constructor support to other passes!) Af-
ter the transformation, the resulting tuple expression is monomorphized via existing
transformation logic in the compiler.

3.5.2 Translation to Futhark’s core language

While Futhark’s core language could directly support constructors and matches (mak-
ing the discussed transformations unnecessary), this would be at the cost of a signif-
icant increase in complexity of the compiler. Out of a desire to keep things simple,
Futhark’s core language was not modified as part of this project: matches are instead
transformed into an equivalent core language representation.

The basic scheme is to transform match-expressions into a nested series of if-
else-expressions whose boolean conditions test whether a case pattern matches the
expression being matched upon and whose bodies correspond to the body of a given
case. For a match-expression of the form

match e

case p1 → e1

...

case pn → en

we generate an if-else-expression of the form

if cond(p1, e) then pbind(p1, e, e1) else (

...
...

if cond(pn−2, e) then pbind(pn−2, e, en−2) else (

if cond(pn−1, e) then pbind(pn−1, e, en−1) else pbind(pn, e, en)) · · · )

where cond is a function that takes a pattern and an expression and generates an
equation that holds if and only if p successfully matches e. pbind is analogous in
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spirit to the bind and cbind from Chapter 2: pbind(pi, e, ei) evaluates ei under an envi-
ronment augmented with the bindings produced by matching the pattern pi against
e. Note that pbind(pi, e, ei) is guaranteed to be well-defined as a product of the well-
typedness of the given match-expression. All (sub-)patterns that produce bindings
are irrefutable, so pbind make sense regardless of the particular value being matched
on.

Due to the exhaustivity check described in Section 3.4, no conditions need be gen-
erated for the final case expression case pn → en: if all other conditions fail, then
this case must succeed as a consequence of the exhaustivity of the match. Indeed,
it is impossible for matches to get stuck if they’ve made it this far in the compiler
pipeline.22

Generating conditions

We define cond in terms of a helper function cond′ which takes a pattern p and returns
a holed list of conditions, where the holes are placeholders for the expression on which
p is being matched. To demonstrate, we define cond′ for the pattern grammar given
in Section 2.1.4:23

cond′(p) =


λe. [e = c] p = c
λe. [] p = x
λe. (cond′(p1))( f st(e)) ++ (cond′(p2))(snd(e)) p = (p1, p2)

λe. ⊥ p = #id p1 · · · pk

where ⊥ indicates a failure condition (no constructor patterns should be present in
the program after the monomorphization pass). cond may then be defined in terms of
a standard fold:

cond(p, e) = f old
(
&&, true, (cond′(p))e

)
where && is the standard boolean and operator, true the base conditional, and (cond′(p))e
the list being folded over (the direction of the fold is immaterial). The essence of cond
is to enforce equality constraints between pattern constants and the expression be-
ing matched by building up the appropriate projection machinery on the value being
matched on for the given pattern constant.

22We hope so, at least.
23We haven’t fully defined the notation here, but it has its usual meanings. Namely, [e1, e2, . . . ] is a list

and ++ is the list concatenation operator. Also, f st(e1, e2) = e1 and snd(e1, e2) = e2. We’re also using k-ary
constructor patterns instead of the 1-arr constructors in Section 2.1.4.
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Chapter 4

Evaluation and improvements

In this chapter, we discuss a few deficiencies of the existing implementation and offer
possible improvements.

4.1 Problematic arrays of sum types

As an array language, naturally Futhark supports arrays, written [e1, e2, . . . , en]. The
type []τ describes an array with elements of type τ. Futhark also allows program-
mers to annotate array types with optional size annotations [Hen17]. Size annotations
are written as [n]τ, indicating an array of type τ with n elements and are checked
dynamically instead of statically by the type checker.

Now, returning to the option type described in Section 3.5.1, consider the transfor-
mation on a value of type option []int (where int is an example integer type):

#some [1, 2] =⇒ (1, (), [1, 2])

The problem at hand arises when we have an array of option []int values:

[#none, #sum[1, 2]] =⇒ [(0, (), []), (1, (), [1, 2])]

(Where the default value for []int—used as a placeholder in the transformation of the
#none constructor—is just the empty array [], i.e., d([]int) = []). All arrays in Futhark
must be regular [Hen17]. This means that there must exist an m such that

[(0, (), []), (1, (), [1, 2])] : [n](int, (), [m]int)

Now, m must simultaneously be 0 and 2. Hence, the above expression is illegal and re-
sults in a run-time failure. If the default value function had access to a size annotation,
it could yield a compatible default value. For example, d([n]int) = [d(int), · · · , d(int)]
where the array has n elements. Unfortunately, size annotations aren’t part of the
type checker and hence there is no mechanism in place to annotate #none with the
type option [2]int instead of option []int. Fortunately, work is being actively done on
adding size annotation support to the type checker, at which point they’ll mature to
size types [Hen19b]. Once this work is complete, this issue can be addressed.

4.2 Constructor deduplication

The constructor transformation discussed in Section 3.5.1 is rather inefficient: each
constructor for a given sum type is represented by a tuple with entries for every field
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of the sum type. To do better, [Hen19a] describes and implements a method to avoid
some duplication by having distinct constructors share tuple entries.24

The transformation is moved out of the monomorphization pass and into the in-
ternalization phase, where terms and types are converted to Futhark’s core language.
For each clause of a sum type, the transformation constructs a mapping which maps
the fields of the clause to indices in the output tuple. The key idea is that for each
primitive type (numeric types or booleans), the resulting tuple needs only have as
many entries for that type as the clause with the maximal number of fields with the
type in question. Such a mapping can be constructed in a straightforward manner
by iterating over each clause of a sum type: if the tuple being generated already has
a free entry with the appropriate type for a field of the clause, the mapping assigns
the field to that entry, rather than appending a new entry to the tuple. The resulting
mapping is best illustrated by a picture—see Figure 4.1 for an example.

#a i32 i32 bool i32 | #b i32 bool | #c f32 bool bool

(<tag>, i32, i32, bool, i32, f32, bool)

Figure 4.1: Illustration of the constructor transformation with deduplication. The ar-
rows map fields of constructors to entries in the tuple representation for the sum type.
Notice that a number of arrows map to the same entry—this is how the transformation
saves space!

For large sum types or sum types whose individual clauses share fields with many
of the same types, the transformation can result in a significant performance increase:
[Hen19a] reports a factor of two speed-up in a ray tracer compared with the transfor-
mation of Section 3.5.1.

4.3 Efficiency of generated conditional statements

4.3.1 Eliminating redundant tests

The match-expression transformation described in Section 3.5.2 unnecessarily gener-
ates if-else-expressions that test values more than once. The issue is that—for each
pattern—the scheme described generates a condition that tests all values required for
a match. For example, the expression

match e

case (0, 5, 3)→ e1

case (0, x, 3)→ e2

case (0, 4 )→ e3

case → e4

24This improved constructor transformation has already been added to the Futhark compiler by Troels
Henriksen.
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is transformed into

if ((e.1 == 0) && (e.2 == 5) && (e.3 == 3))

then pbind((0, 5, 3), e, e1)

else (if ((e.1 == 0) && (e.3 == 3))

then pbind((0, x, 3), e, e2)

else (if ((e.1 == 0) && (e.2 == 4))

then pbind((0, 4, ), e, e3)

else pbind( , e, e4)))

where e.k returns the k-th entry of the tuple e. This scheme results in significant back
tracking: in the above, (e.1 == 0) may be tested up to three times and (e.3 == 3) up
to two times. To avoid this, [Car84] describes an algorithm which produces decision
trees via splitting patterns vertically into columns in a process remarkably similar to
how pattern exhaustivity is checked in Section 3.4. Reasonable decision trees of this
nature never test a value more than once. To illustrate, the patterns in the example
program above are split into three columns:

case (0, 5, 3)→ e1

case (0, x, 3)→ e2

case (0, 4, )→ e3

case ( , , )→ e4

(Where is expanded into ( , , ) to structurally match the other patterns. Such
an expansion is always possible and doesn’t change the semantics of the match.) We
are now tasked with choosing a column to begin discriminating on. The goal is to
produce as small of an expression as possible. A number heuristics exist to do so:
[Car84] suggests choosing the column with the largest number of literal values while
[Mar08] suggests a more sophisticated heuristic system that combines multiple met-
rics. For simplicity, we proceed left-to-right across the columns.25 In the first column
we must test whether the tuple entry is 0 or not, yielding the expression

if (e.1 == 0)

then (· · · )
else (· · · )

In the second column we group further discriminating expressions by the entries in
the first column. When the first entry is 0, we must discriminate on whether the
second entry is 5, 4, or a variable/wildcard. When the first entry isn’t 0, the second

25In practice, [SR00] suggests that proceeding left-to-right is actually perfectly reasonable and that heuris-
tics really only make a performance difference in pathological cases. [SR00] also notes that it’s possible to
compile any match into an ideal expression, but that this minimization process is likely NP-complete.
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entry is another wildcard, so no further discrimination is required. This yields

if (e.1 == 0)

then (if (e.2 == 5)

then (· · · )
else (if (e.2 == 4)

then (· · · )
else (· · · )))

else (· · · )

A similar process for the third column yields

if (e.1 == 0)

then (if (e.2 == 5)

then (if (e.3 == 3)

then pbind((0, 5, 3), e, e1)

else (· · · ))
else (if (e.2 == 4)

then (if (e.3 == 3)

then pbind((0, x, 3), e, e2)

else pbind((0, 4, ), e, e3)))

else (if (e.3 == 3)

then pbind((0, x, 3), e, e2)

else pbind(( , , ), e, e4)))

else pbind(( , , ), e, e4)

We’ve completed traversing the columns, but there remains a superfluous else(· · · )
line with no expressions to fill it in the expression. Such lines only occur when there is
no alternative expression to return, meaning we may combine them with the previous
discriminator:

if (e.1 == 0)

then (if ((e.2 == 5) && (e.3 == 3))

then pbind((0, 5, 3), e, e1)

else (if (e.2 == 4)

then (if (e.3 == 3)

then pbind((0, x, 3), e, e2)

else pbind((0, 4, ), e, e3)))

else (if (e.3 == 3)

then pbind((0, x, 3), e, e2)

else pbind(( , , ), e, e4)))

else pbind(( , , ), e, e4)

Even when combining tests like this, each test is still performed at most once as long
as the && operator supports short-circuiting (which, in Futhark, it does). While this
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alternative scheme does produce a larger expression (that may be exponential in size,
compared to the linear size of the naive matching previously described), it executes
faster due to a smaller number of comparisons. In practice, matches that programmers
write tend to be simple and code explosion is a non-issue.

As noted in Section 3.4, the Futhark compiler also does not eliminate redundant—
perhaps “unreachable” is the better term here—cases. These cases remain unreachable
in the transformed if-else-expression and so don’t appreciably add to the runtime of
compiled programs, but they do contribute to increased code size. Further efficiency
gains can be expected by implementing the redundant elimination algorithm detailed
in Section 3.4 and at virtually no additional cost: the algorithm can be coupled to-
gether with the exhaustivity checker (and performed in the same pass).

4.4 Sum type polymorphism

As discussed in Section 3.3, Futhark only supports very limited sum type polymor-
phism in the form of polymorphic constructors—a necessary consequence of support-
ing good type inference for sum types. In this section, we’ll explore the necessary
adjustments required to support full sum type polymorphism through the lens of the
OCaml26 programming language.

OCaml supports both “standard” nominally typed sum types (which it calls vari-
ants) and so-called polymorphic variants (i.e., polymorphic sum types). As with Futhark,
OCaml’s polymorphic variants are structurally typed and constructors exist in the
global namespace. The difference lies in that OCaml’s polymorphic variants are just
that: polymorphic—both for constructors and acceptors. To enable true polymor-
phism, OCaml uses a more sophisticated sum type constraint system. To illustrate,
consider the ill-typed Futhark program below:

let f x =
match x
case #a -> 1
case #b -> 2
case #c -> 3

When compiled by the Futhark compiler, the following type error is returned:

Type is ambiguous (must be a sum type with constructors: #a | #b | #c).

Here, the compiler is pretty-printing the generated HasConstrs constraint (see Sec-
tion 3.3.1) as the error message. Adopting the notation of [Gar98], we may alterna-
tively express this constraint as

x : [> #a | #b | #c]

which expresses that x must be a sum type with at least the given constructors. The >
symbol is suggestive here: the ascription is a sort of lower bound on the type of x.27

One might ask if it makes sense to have a corresponding constraint

x : [< #a | #b | #c]
26https://ocaml.org/
27Just to be clear: the above is a constraint, not a type. There is actually a hidden type variable, which we

can make explicit: x : ∀[α > #a | #b | #c] . α. This constraint is analogous to the α = β | #a | #b | #c constraint
from Section 2.5.
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that, instead of a lower bound, act as an upper bound, placing a maximal restriction
on the clauses of a sum type. Looking at the ill-typed Futhark program above, this
actually seems like the correct constraint to ascribe to the program: the match includes
a case for each of the constructors in the constraint, so data with a type that is upper
bounded by this constraint should be safe to match upon.

This is the approach that OCaml takes: by using both upper and lower bounds,
OCaml’s polymorphic variants are truly polymorphic in that upper-bounded con-
straints allow the type system to express constraints on acceptors without needing
to fully resolve their precise types. In this system, expressions may be “typed” with
constraints and then interact with types that meet these constraints.

Modifying Futhark’s type system to support sum type polymorphism in this way is
entirely possible (namely by the introduction of an upper bound sum type constraint).
However, it’s less clear how to modify Futhark’s back-end to support polymorphic
sum types where the lack of static type information significantly complicates trans-
formation to Futhark’s core language. The interesting point here is that—at the type
level—supporting sum type polymorphism when sum types are structurally typed
and constructors exist in the global namespace amounts to little more than an extra
constraint.

Finally, polymorphic sum types aren’t without disadvantages: the OCaml man-
ual28 specifically notes a weaker type discipline and loss of static type information,
which can be consequential for highly-optimizing compilers. Benefits—aside from
doing away with type ascriptions (which can be reduced following the remarks in
Section 3.3.2 anyway)—mostly involve things like code-reuse as well as a sort of type-
level simulation of sub-typing, neither of which are particularly relevant for Futhark
[Gar00, Gar98].

4.5 The utility of sum types in Futhark

In this section, we’ll take a look at a couple of real-world Futhark programs with and
without sum types.

Diving Beet

Diving Beet is a cellular-automaton based particle simulator, written in Futhark (and
Python) by Troels Henriksen.29 The simulator encodes various elements as numeric
values; a few token examples are reproduced below:

type element = u8

let oil : element = 6u8
let water : element = 7u8
let fire : element = 12u8
let fire_end : element = 22u8

Notably, the fire element spans a range of values between fire and fire_end in order
to simulate fire burning out over time (e.g., 17 represents a fire element that is halfway
to burning out). This information can be represented better and safer via sum types.
The range of fire elements is combined into a single constructor with an age payload:

28http://caml.inria.fr/pub/docs/manual-ocaml/lablexamples.html#sec49
29https://github.com/athas/diving-beet
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type age = u8
type element = #oil | #water | #fire age

Lys

Lys30 is an SDL31-based graphics programming library written in Futhark. The Futhark
program defines a lys module type which features a number of event handlers for
different possible input events (e.g., a key press or mouse movement). The intent is
that the user of the library defines a module of type lys which implements the desired
behavior. Prior to the introduction of sum types, the module types for the possible
input event handlers were32

type key_event = #keydown | #keyup

val key : key_event -> i32 -> state -> state
val mouse : (mouse_state: i32) -> (x: i32) -> (y: i32) -> state -> state
val wheel : (x: i32) -> (y: i32) -> state -> state

With sum types, all these events were combined into a single event type and the three
handlers were reduced to one:

type event = #step f32
| #keydown {key:i32}
| #keyup {key:i32}
| #mouse {buttons:i32, x:i32, y:i32}
| #wheel {x:i32, y:i32}

val event : event -> state -> state

(A #step event is just a time step event.) Aside from the module type definition being
conceptually simpler and more cohesive, this change also results in a nicer definition
of the event handler when a module of type lys is defined. Rather than having to
define a handler for each event separately (as would have been required pre sum
types), instead the handler is a single function:

let event (e: event) (s: state) =
match e

case (#step td) -> ...
case (#wheel {x, y}) -> ...
case (#mouse {buttons, x, y}) -> ...
case _ -> s

Notably, the match on the event type lets the programmer easily ignore events that
they do not care about (here, for key presses). In the sum type version, the library can
also be easily updated to support additional events: if another input type is desired
(e.g., from a joystick), simply add an appropriate #joystick constructor to the event
type. This may not even break user programs if they have a catch-all case in their
definition of the event function.

30https://github.com/diku-dk/lys
31https://www.libsdl.org/
32Observant readers will note that key_event is a sum type. This part of the library was written when

Futhark supported the special case of 0-ary sum types (i.e., enumerations) as part of the implementation
process of k-ary sum types.
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Chapter 5

Conclusions and future work

We have described the theory and implementation of sum types in Futhark. On the
theory side, we explored a type system of a model language with sum types and
proved its soundness. The constraint-based type system discussed in Section 2.5 is
a convincing facsimile of Futhark’s actual type system in regards to sum types: the
results of this section inspire confidence in the correctness of the corresponding im-
plementation in the Futhark compiler.

While we’re confident in the correctness of the type system there are still improve-
ments to be made. As Futhark’s type system becomes increasingly complex with the
introduction of new features like sum types and—in the future—size types (see Sec-
tion 4.1) type error messages become an increasingly vital form of feedback for the
programmer. Futhark’s structural type system makes this a difficult task: structural
type systems lack the granularity of nominal type systems (as they can only distin-
guish types by structure alone). This shortcoming is especially apparent with the
introduction of sum types. For example, in a nominal type system the constructor
#none from the option τ type in Section 3.5.1 can only be of type option τ. In con-
trast, Futhark’s structural system can make no such distinction: #none is a clause of
an unbounded number of sum types simultaneously, which decreases the amount of
information that is available as feedback to the programmer and has negative ram-
ifications for error locality. Solutions to this problem remain to be investigated; a
bidirectional type system (see, e.g., [DK19]) has been suggested as a possible solution .

The internalization part of the implementation leaves a bit more to be desired.
While the implementation described in this work is certainly functional (aside from
the issue described in Section 4.1) and was thoroughly tested with nearly 100 unit
tests, it isn’t particularly efficient! Even with the efficiency improvements described
in Chapter 4 there remains work to be done in this area, especially in the transforma-
tion of constructors into tuples—even with deduplication (Section 4.2), tuples are still
larger than they need be. (Deduplication only works for fields of the same type, even
if that field could fit values of different types. That is, a more efficient implementation
would allow a single tuple entry to perhaps hold both booleans and numeric values.)

Qualitative evaluation of sum types (Section 4.5) in Futhark shows that sum types
do indeed have a place in specialized computational languages and are useful to pro-
grammers. Collections of distinct values arises in all sorts of computational problems:
providing the programmer a type-level interface for such values—backed by a static
type checker—has proven to be a useful abstraction that not only leads to more ex-
pressive programs, but safer ones too.
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