AUTOMAP:

Inferring Rank-Polymorphic Function Applications with Integer Linear Programming

Robert Schenck ¹, Nikolaj Hey Hinnerskov ¹, Troels Henriksen ¹, Magnus Madsen ², Martin Elsman ¹

¹DIKU University of Copenhagen Denmark

> ²Aarhus University Denmark

June 25th, 2024

Context

This presentation is about **Futhark**, a **functional** array language.

- Designed to study compilation of array languages.
- Space is function application: $f \times means f(x)$.

Context

This presentation is about **Futhark**, a **functional** array language.

- Designed to study compilation of array languages.
- Space is function application: $f \times means f(x)$.
- Functions are **curried**: $f \times y \times z$ means $((f \times x) \times y) \times z$.

Context

This presentation is about **Futhark**, a **functional** array language.

- Designed to study compilation of array languages.
- Space is function application: $f \times means f(x)$.
- Functions are **curried**: f x y z means ((f x) y) z.
- Hindley-Milner style static type system (it has parametric polymorphism).

Example

```
def dotprod x y = sum (map (*) x y)
```

$$\blacksquare$$
 [1,2,3] + 4 => [5,6,7]

$$\blacksquare$$
 [1,2,3] + 4 => [5,6,7]

```
■ sqrt [[1,4,9], [16,25,36]] => [[1,2,3], [4,5,6]]
```

Rank polymorphism

The ability to apply functions to arguments with different ranks than the function expects.

Rank polymorphism

The ability to apply functions to arguments with different ranks than the function expects.

Makes code easier to read and closer to math

```
map (+) [1,2,3] [4,5,6] VS. [1,2,3] + [4,5,6]
```

Rank polymorphism

The ability to apply functions to arguments with different ranks than the function expects.

Makes code easier to read and closer to math

map
$$(+)$$
 [1,2,3] [4,5,6] VS. [1,2,3] + [4,5,6]

 Practically all rank polymorphic languages are dynamic: NumPy, APL, MATLAB, ...

map and rep

■ map f xs applies f to each element of xs:

```
map f [x_0, x_1, ..., x_n] = [f x_0, f x_1, ..., f x_n]
```

map and rep

■ map f xs applies f to each element of xs:

$$map f [x_0, x_1, ..., x_n] = [f x_0, f x_1, ..., f x_n]$$

You can map functions that take multiple arguments too:

map and rep

■ map f xs applies f to each element of xs:

```
map f [x_0, x_1, ..., x_n] = [f x_0, f x_1, ..., f x_n]
```

■ You can map functions that take multiple arguments too:

• rep x makes an array of unspecified length whose elements are all x:

```
rep x = [x, x, ..., x]
```

We'll ignore the question of how many elements are needed.

```
[[1,2],[3,4]] + 1
```

```
[[1,2],[3,4]] + 1
elaborates to
[[1,2],[3,4]] + rep (rep 1)
```

```
xss : [][]int
f: []int -> [][]int -> int
f xss xss
```

```
xss : [][]int
f: []int -> [][]int -> int
f xss xss

Elaborating the first application:
(map f xss)
```

```
[[1,2],[3,4]] + 1
elaborates to
[[1,2],[3,4]] + rep (rep 1)
which further elaborates to
map (map (+)) [[1,2],[3,4]]
      (rep (rep 1))
```

```
xss: [][]int.
   f: []int -> [][]int -> int
   f xss xss
Elaborating the first application:
 (map f xss)
Elaborating the second application:
 (map f xss) (rep xss)
because
(map f xss) : [][][]int -> []int
```

```
[[1,2],[3,4]] + 1
elaborates to
[[1,2],[3,4]] + rep (rep 1)
which further elaborates to
map (map (+)) [[1,2],[3,4]]
     (rep (rep 1))
```

```
xss: [][]int.
   f: []int -> [][]int -> int
   f xss xss
Elaborating the first application:
 (map f xss)
Elaborating the second application:
 (map f xss) (rep xss)
because
(map f xss) : [][][]int -> []int
```

rep can often be free by fusing it into function

```
map (\xs -> f xs xss) xss
```

Goal

For each function application, the compiler should automatically insert maps and reps to make the application rank-correct.

```
f x \implies map ( ... (map f) ... ) (rep ... (rep x))
```

```
sum: []int -> int
length : []a -> int
xss : [][]int
sum (length xss)
```

```
sum: []int -> int
length : []a -> int
xss : [][]int

sum (length xss)

Many rank-correct elaborations:
    l. sum (rep (length xss))
```

```
sum: []int -> int
length : []a -> int
xss : [][]int

sum (length xss)

Many rank-correct elaborations:
  l. sum (rep (length xss))
  2. sum (map length xss)
```

```
sum: []int -> int
length : []a -> int
xss: [][]int
sum (length xss)
Many rank-correct elaborations:
 1. sum (rep (length xss))
 2. sum (map length xss)
 3. map sum (map (map length) (rep xss))
4. ...
```

Rule 1

An application can be mapped or repped (or neither) but never both.

Rule 1

An application can be mapped or repped (or neither) but never both.

OK:

- ▶ map f x
- **▶** g (**rep** (**rep** x))
- ► (map (map h) x) (rep y)

Rule 1

An application can be mapped or repped (or neither) but never both.

OK:

```
map f x
    g (rep (rep x))
    (map (map h) x) (rep y)

BAD:
    map f (rep x)
    (map (map q)) (rep x)
```

Rule 1

An application can be mapped or repped (or neither) but never both.

OK:

Never necessary to map and rep in the same application to obtain a rank-correct program.

Rule 2

Minimize the number of inserted maps and reps.

Rule 2

Minimize the number of inserted maps and reps.

• Generally aligns with programmer's intent/simple mental model.

Rule 2

Minimize the number of inserted maps and reps.

- Generally aligns with programmer's intent/simple mental model.
- Minimization over all the applications of a top-level definition:
 - Only have to choose from the set of minimal solutions. sum (length xss) can be elaborated to:
 - 1. sum (rep (length xss))
 - 2. sum (map length xss)

Challenge: elaboration is global

- sum (map length xss) is a global minimal elaboration of sum (length xss).
 - ▶ Inserting the map requires considering the outer sum.

Challenge: elaboration is global

- sum (map length xss) is a global minimal elaboration of sum (length xss).
 - ▶ Inserting the map requires considering the outer sum.

 To find minimal elaborations, must consider all applications simultaneously.

Challenge: type variables

• Futhark has parametric polymorphism:

```
id : a -> a
length : []a -> int
```

A type variable can have any rank!

Challenge: type variables

Futhark has parametric polymorphism:

```
id : a -> a
length : []a -> int
```

A type variable can have any rank!

How do we statically insert maps and reps in the presence of type variables, whose ranks aren't known?

Suppose

■ The application f x has constraint

$$p = a$$

Suppose

■ The application f x has constraint

$$p = a$$

We only care about rank, so relax to

$$|p| = |a|$$

where |p| is the **rank** of p.

Suppose

■ The application f x has constraint

$$p = a$$

We only care about rank, so relax to

$$|p| = |a|$$

where |p| is the **rank** of p.

• For example: |[][]int| = 2 and |int| = 0.

Rank polymorphisms means rank differences are allowed.

Rank polymorphisms means rank differences are allowed.

- Case |p| < |a|:
 - ▶ Introduce a **rank variable** *M* to account for the difference:

$$M + |p| = |a|$$

Rank polymorphisms means rank differences are allowed.

- Case |p| < |a|:
 - ▶ Introduce a **rank variable** *M* to account for the difference:

$$M + |p| = |a|$$

Example:

```
sqrt : int -> int
[1,2,3] : []int
```

Application sqrt [1,2,3] gives the constraint

$$M + \underbrace{|\text{int}|}_{0} = \underbrace{|\text{[]int}|}_{1} \implies M = 1$$

M is equal to the number of maps required: map sqrt [1,2,3]

- Case |p| > |a|:
 - ▶ Introduce a rank variable R to account for the difference:

$$|p| = R + |a|$$

- Case |p| > |a|:
 - ► Introduce a rank variable R to account for the difference:

$$|p| = R + |a|$$

► Example: length : []a -> int The application length 3 gives the constraint

|[]
$$\alpha$$
| = R + |int|
 $1 + |\alpha| = R \implies R = 1, 2, 3...$

- Case |p| > |a|:
 - ▶ Introduce a rank variable R to account for the difference:

$$|p| = R + |a|$$

► Example: length : []a -> int The application length 3 gives the constraint

$$|[]\alpha| = R + |int|$$

 $1 + |\alpha| = R \implies R = 1, 2, 3...$

R is equal to the number of **rep**s required:

- length (rep 3)
- ▶ length (rep (rep 3))
- ▶ .

■ Each application of a function $f:p \rightarrow c$ to an argument x:a generates a constraint

$$M + |p| = R + |a|$$

■ Each application of a function $f: p \rightarrow c$ to an argument x: a generates a constraint

$$M + |p| = R + |a|$$

Rule 1: can either map or rep but not both

$$M = 0 \text{ or } R = 0$$

• Collect the constraints for each function application.

- Collect the constraints for each function application.
- Example: sum (length xss)

$$M_1 + 1 + |\alpha| = R_1 + 2$$

 $M_1 = 0 \text{ or } R_1 = 0$ } length

- Collect the constraints for each function application.
- Example: sum (length xss)

$$\begin{aligned} & M_1 + 1 + |\alpha| = R_1 + 2 \\ & M_1 = 0 \text{ or } R_1 = 0 \end{aligned} \right\} \text{length}$$

$$\begin{aligned} & M_2 + 1 = R_2 + M_1 \\ & M_2 = 0 \text{ or } R_2 = 0 \end{aligned} \right\} \text{sum}$$

- Collect the constraints for each function application.
- Example: sum (length xss)

$$\begin{aligned} &M_1 + 1 + |\alpha| = R_1 + 2 \\ &M_1 = 0 \text{ or } R_1 = 0 \end{aligned} \right\} \text{ length}$$

$$\begin{aligned} &M_2 + 1 = R_2 + M_1 \\ &M_2 = 0 \text{ or } R_2 = 0 \end{aligned} \right\} \text{ sum}$$

■ Rule 2: Minimize the number of maps and reps

- Collect the constraints for each function application.
- Example: sum (length xss)

minimize
$$\begin{aligned} & M_1 + R_1 + M_2 + R_2 \\ & \text{subject to} \\ & M_1 + 1 + |a| = R_1 + 2 \\ & M_1 = 0 \text{ or } R_1 = 0 \end{aligned} \right\} \text{length} \\ & M_2 + 1 = R_2 + M_1 \\ & M_2 = 0 \text{ or } R_2 = 0 \end{aligned} \right\} \text{sum}$$

■ Rule 2: Minimize the number of maps and reps

- Collect the constraints for each function application.
- Example: sum (length xss)

```
minimize  \begin{aligned} & M_1 + R_1 + M_2 + R_2 \\ & \text{subject to} \\ & M_1 + 1 + |\alpha| = R_1 + 2 \\ & M_1 = 0 \text{ or } R_1 = 0 \end{aligned} \right\} \text{length} \\ & M_2 + 1 = R_2 + M_1 \\ & M_2 = 0 \text{ or } R_2 = 0 \end{aligned} \right\} \text{sum}
```

- Rule 2: Minimize the number of maps and reps
- The or-constraints can be linearized to obtain an Integer Linear Program (ILP).

1. For each application generate rank equality and Rule 1 constraint.

- 1. For each application generate rank equality and Rule 1 constraint.
- 2. Transform constraint set into an ILP and solve.

- 1. For each application generate rank equality and Rule 1 constraint.
- 2. Transform constraint set into an ILP and solve.
- 3. Use ILP solution to elaborate. E.g., if the *i*-th application $f \times has$ $M_i = 3$ and $R_i = 0$:

$$f x \implies map (map (map f)) x$$

- 1. For each application generate rank equality and Rule 1 constraint.
- 2. Transform constraint set into an ILP and solve.
- 3. Use ILP solution to elaborate. E.g., if the *i*-th application $f \times has$ $M_i = 3$ and $R_i = 0$:

```
f x \implies map (map (map f)) x
```

4. Type check elaborated program and continue with compilation.

- map and rep are normal Futhark functions.
 - ▶ Programmer free to use AUTOMAP to whatever extent they wish.

- map and rep are normal Futhark functions.
 - ▶ Programmer free to use AUTOMAP to whatever extent they wish.
- Ambiguity feedback:

```
sum (length xss) can be elaborated to:
```

```
1. sum (rep (length xss))
```

- 2. sum (map length xss)
- Nice error messages.
- ▶ Disambiguation is easy: just insert a map or rep into the source.

- map and rep are normal Futhark functions.
 - ▶ Programmer free to use AUTOMAP to whatever extent they wish.
- Ambiguity feedback:

```
sum (length xss) can be elaborated to:
```

```
1. sum (rep (length xss))
```

- 2. sum (map length xss)
- Nice error messages.
- ▶ Disambiguation is easy: just insert a map or rep into the source.

- map and rep are normal Futhark functions.
 - ▶ Programmer free to use AUTOMAP to whatever extent they wish.
- Ambiguity feedback:

```
sum (length xss) can be elaborated to:
```

```
1. sum (rep (length xss))
```

- 2. sum (map length xss)
- Nice error messages.
- ▶ Disambiguation is easy: just insert a map or rep into the source.
- Fully transparent: compiler can always elaborate any implicit maps or reps.

- map and rep are normal Futhark functions.
 - ▶ Programmer free to use AUTOMAP to whatever extent they wish.
- Ambiguity feedback:

```
sum (length xss) can be elaborated to:
```

```
1. sum (rep (length xss))
```

- 2. sum (map length xss)
- Nice error messages.
- ▶ Disambiguation is easy: just insert a map or rep into the source.
- Fully transparent: compiler can always elaborate any implicit maps or reps.

Practical impact

Difficult to quantify value of feature that is glorified syntax sugar.

We (manually!) rewrote programs to take advantage of AUTOMAP when we judged it improved readability.

Practical impact: before

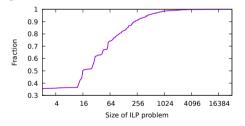
```
def main [nK][nX]
         (kx: [nK]f32) (ky: [nK]f32) (kz: [nK]f32)
         (x: [nX]f32) (y: [nX]f32) (z: [nX]f32)
         (phiR: [nK]f32) (phiI: [nK]f32)
       : ([nX]f32, [nX]f32) =
  let phiM = map (\r i -> r*r + i*i) phiR phiI
  let as = map (\x e y e z e ->
             map (2*pi*)
                (map (\kx e kv e kz e ->
                   kx e * x e + kv e * v e + kz e * z e
                  kx kv kz))
            X V Z
  let qr = map (\a -> sum(map2 (*) phiM (map cos a))) as
  let qi = map (\langle a - \rangle sum(map2 (*) phiM (map sin a))) as
  in (ar, ai)
```

Practical impact: after

```
def main [nK][nX]
         (kx: [nK]f32) (ky: [nK]f32) (kz: [nK]f32)
         (x: [nX]f32) (y: [nX]f32) (z: [nX]f32)
         (phiR: [nK]f32) (phiI: [nK]f32)
       : ([nX]f32, [nX]f32) =
  let phiM = phiR*phiR + phiI*phiI
  let as = 2*pi*(kx*transpose (rep x)
           + ky*transpose (rep y)
           + kz*transpose (rep z))
  let qr = sum (cos as * phiM)
  let qi = sum (sin as * phiM)
  in (qr, qi)
```

Metrics from changing a benchmark suite

Proportion of ILP problems that have less than some given number of constraints.



Number of programs: 67

Lines of code: $8621 \Rightarrow 8515$

Change in maps: $467 \Rightarrow 213$

Largest ILP size: 28104 constraints

Median ILP size: 16 constraints

Mean ILP size: 116 constraints

Mean type checking slowdown: $2.50 \times$

Related work

Typed Remora:

- ▶ Very general/powerful; binds shape variables in types: $\forall S.S \text{ int } \rightarrow \text{int.}$
- ► Inference is very difficult.

Related work

Typed Remora:

- ▶ Very general/powerful; binds shape variables in types: $\forall S.S \text{ int } \rightarrow \text{int.}$
- ► Inference is very difficult.
- Naperian Functors (Jeremy Gibbons):
 - Cool rank polymorphism encoding in Haskell.
 - Complicated function types (and potentially error messages).

Related work

Typed Remora:

- ▶ Very general/powerful; binds shape variables in types: $\forall S.S \text{ int } \rightarrow \text{int.}$
- ► Inference is very difficult.

Naperian Functors (Jeremy Gibbons):

- Cool rank polymorphism encoding in Haskell.
- Complicated function types (and potentially error messages).

Single-assignment C:

- ► Has rank specialization where functions have specialized definitions depending on the rank of the input.
- No parametric polymorphism or higher-order functions.

 AUTOMAP is a conservative extension of/compatible with a Hindley-Milner type system for array programming.

- AUTOMAP is a conservative extension of/compatible with a Hindley-Milner type system for array programming.
- Anything inferred can also be inserted explicitly (much like classic type systems!)

- AUTOMAP is a conservative extension of/compatible with a Hindley-Milner type system for array programming.
- Anything inferred can also be inserted explicitly (much like classic type systems!)
- Type checking based on some heavy machinery (ILP), but we suspect of a fairly simple kind.

- AUTOMAP is a conservative extension of/compatible with a Hindley-Milner type system for array programming.
- Anything inferred can also be inserted explicitly (much like classic type systems!)
- Type checking based on some heavy machinery (ILP), but we suspect of a fairly simple kind.
- Implemented in Futhark, but not really production ready yet.
 - Todo: quality of type errors, type checking speed.

- Check out Futhark: https://futhark-lang.org
 - ► There's a blog post on AUTOMAP that covers this talk in more detail. (A paper is coming too.)

- Check out me: https://rschenck.com
 - Graduating December 2024, looking for a postdoc (or a real job) in types/functional programming/compilers.

Troubles

Can we always rewrite map f x as f x?

Consider (outer product)

```
map (\xspace x -> x) map (\xspace x x) ys) xs
```

Troubles

Can we always rewrite map f x as f x?

Consider (outer product)

map
$$(\x -> map (*x) ys) xs$$

■ Removing the innermost map works fine:

```
map (\xspace x -> x * ys) xs
```

Troubles

Can we always rewrite map f x as f x?

Consider (outer product)

map (
$$\xspace x -> x$$
) ws) xs

Removing the innermost map works fine:

map
$$(\x -> x * ys) xs$$

Removing the outer map:

$$(\x -> x * ys) xs$$

(which is the same as xs * ys). This is elaborated by AUTOMAP to

$$map (*) xs ys$$