
ar
X

iv
:2

50
6.

23
05

8v
1 

 [
cs

.P
L

] 
 2

9 
Ju

n 
20

25

Verifying Properties of Index Arrays in a Purely-Functional
Data-Parallel Language

NIKOLAJ HEY HINNERSKOV, University of Copenhagen, Denmark
ROBERT SCHENCK, Vrije Universiteit Amsterdam, Netherlands
COSMIN E. OANCEA, University of Copenhagen, Denmark

This paper presents a novel approach to automatically verify properties of pure data-parallel programs with
non-linear indexing—expressed as pre- and post-conditions on functions. Programs consist of nests of second-
order array combinators (e.g., map, scan, and scatter) and loops. The key idea is to represent arrays as index
functions: programs are index function transformations over which properties are propagated and inferred.
Our framework proves properties on index functions by distilling them into algebraic (in)equalities and
discharging them to a Fourier-Motzkin-based solver. The framework is practical and accessible: properties are
not restricted to a decidable logic, but instead are carefully selected to express practically useful guarantees
that can be automatically reasoned about and inferred. These guarantees extend beyond program correctness
and can be exploited by the entire compiler pipeline for optimization. We implement our system in the pure
data-parallel language Futhark and demonstrate its practicality on seven applications, reporting an average
verification time of 1 second. Two case studies show how eliminating dynamic verifications in GPU programs
results in significant speedups.

ACM Reference Format:
Nikolaj Hey Hinnerskov, Robert Schenck, and Cosmin E. Oancea. 2025. Verifying Properties of Index Arrays in a
Purely-Functional Data-Parallel Language. 1, 1 (July 2025), 28 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
A rich body of work is dedicated to static verification of program properties. This includes (1)
theorem provers such as Rocq [5] and Agda [9], which facilitate principled reasoning through
their dependent type systems, (2) the systems in the F* family [58, 59], which are commonly aimed
at verifying low-level code by, for example, combining dependent type, effect-based reasoning
with separation logic, (3) work on Liquid Haskell [49, 63], which is facilitated by reasoning on
recursive data types, such as lists, and allows specification of arbitrary user-defined properties,
while enabling automated SMT-based reasoning, and (4) systems that implement decidable subsets
of array logic [60, 69], but which are restricted to linear indexing. Such systems are commonly
aimed at sequential code and either restrict the domain of supported computations (4), or require
expert knowledge (e.g., the programmer must explicitly compose the proofs checked by the system).

This paper presents compiler analyses for inferring and verifying properties of integral arrays—
e.g., ranges, monotonicity, injectivity, bijectivity, filtering, partitioning—applicable to functional
data-parallel languages, such as Futhark [31, 44, 53], Accelerate [12, 19, 61], Lift [22, 55, 56], DaCe [3,
4, 70].

Authors’ addresses: Nikolaj Hey Hinnerskov, nhin@912134.xyz, University of Copenhagen, Denmark; Robert Schenck, r@
bert.lol, Vrije Universiteit Amsterdam, Netherlands; Cosmin E. Oancea, cosmin.oancea@di.ku.dk, University of Copenhagen,
Denmark.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2025 Association for Computing Machinery.
XXXX-XXXX/2025/7-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: July 2025.

HTTPS://ORCID.ORG/0000-0001-7559-0939
HTTPS://ORCID.ORG/0000-0001-5848-8166
HTTPS://ORCID.ORG/0000-0001-5421-6876
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://orcid.org/0000-0001-7559-0939
https://orcid.org/0000-0001-5848-8166
https://orcid.org/0000-0001-5421-6876
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://arxiv.org/abs/2506.23058v1


2 Nikolaj Hey Hinnerskov, Robert Schenck, and Cosmin E. Oancea

Specific to this domain, the computation is separated (fissed) into bulk-parallel array operations—
such as map, scan (prefix sum), and scatter (irregular write)—called second-order array combinators,
together with loops. Eventually, index arrays computed in this way are serve as the indirect indices
of irregular read (gather) or write (scatter) operations. Index arrays are analytically convenient
because (1) they are typically manipulated in simpler ways than general computation, and (2) they
directly inform properties of general arrays, such as injectivity, filtering, and partitioning.
The programming style is both a challenge and an opportunity: On the one hand, the natural

expression of sequential computation is in fused form, (e.g., folds), which facilitates easier tracking
of the target property at each step of the way. On the other hand, language purity and the semantics
of second-order combinators allow to lift the level of abstraction at which the compiler reasons.

Our solution is motivated by the evolution of scheduling languages [23, 48], which demonstrates
that the coupling of language specalization (and its compiler repertoire) with human expertise has
been essential to unlocking high performance. In the same spirit, our system supports (automates) a
predefined, small but powerful set of properties, which are easy to understand and use by the domain
expert (non-expert programmer). This allows the compiler to exploit the algebra of properties to
derive new properties at a high level, and also to use the proven properties to further optimize
the program. Possibilities here include static verification of bounds checking and safety of scatter,
which we demonstrate (Section 6) to have high impact on GPU execution. On the other hand, our
system does not allow the user to specify new properties, and is intended to be neither satisfiable
nor decidable—we aim at practical compilation time without restricting the language.
Our framework is aimed at verifying Futhark programs and is implemented as a compiler pass

that is structured into three logical components: (1) an analysis InfIxf, presented in Section 4, that
infers an index function representation of arrays, which uses guarded expressions (polynomials
defined by cases) to represent the values at each array index and supports jagged arrays whose
segments may be empty, and (2) a property manager PM (Section 3), that verifies properties of
index functions by breaking them into a sufficient set of low-level queries, which are sent to (3) the
query solver QS (Section 5), which uses a Fourier-Motzkin [21, 66] adaptation algorithm that relies
on an algebra of simplifications aimed at sums of array slices.

These components are connected by means of the supported array properties, e.g., the inference
rule of scatter uses monotonicity and bijectivity properties to produce meaningful index functions
that enable expression of jagged arrays and derivation of filtering/partitioning properties. The
property manager can derive properties at a high level, in the absence of an index function, e.g., a
filtering of a monotonic or injective array remains monotonic or injective. Finally, the query solver
uses range, injectivity and monotonicity properties, and answers the queries of InfIxf and PM.
Section 6 presents an evaluation of verifying properties on seven challenging data-parallel

applications that use non-linear indexing, including the maximal matching graph algorithm, three-
way partitioning, segmented filtering and segmented two-way partitioning.1

The principle contributions of this work are:
(1) To our knowledge, this is the first solution addressing verification of array properties—

including monotonicity, bijectivity, filtering, partitioning—in a purely-functional data-parallel
context with non-linear indexing (produced by scatter, gather, scan).

(2) An architectural design that supports verification of a predefined set of properties that are
accessible to non-expert programmers, and reveal to the compiler a compositional algebra
that facilitates high-level reasoning, automation of inference and further code optimizations.

(3) An evaluation that reports successful verification of seven challenging benchmarks that
include graph algorithms and flattened irregular parallelism (segmented filter/partitioning).

1Segmented two-way partitioning is the flat-parallel code [7] that filters/partitions each subarray of an (irregular) jagged
array in flat form, according to predicates that depend on the segment number.
, Vol. 1, No. 1, Article . Publication date: July 2025.



Verifying Properties of Index Arrays in a Purely-Functional Data-Parallel Language 3

𝑥, 𝐹 ::= . . . Variables

𝜏𝑏 ::= i64 | f64 | bool | . . . Base Types
𝜏𝑎 ::= 𝜏𝑏 | [𝑒∗ ]𝜏𝑏 Array Type
𝜏 ::= (.., 𝜏𝑎, ..) Tuple Type

𝑃𝑟𝑒 ::= 𝑒∗ Pre Cond.
𝑃𝑠𝑡 ::= 𝜆𝑥. 𝑒∗ Post Cond.

𝐹𝑢𝑛 ::= def 𝐹 (𝑥 : 𝜏 [ | 𝑃𝑟𝑒 ] ) Function Def.
: 𝜏 [ | 𝑃𝑠𝑡 ] = 𝑒∗

𝑜𝑝 ::= + | − | ∗ Binary Op.
| > | ≥ | < | ≤ | = | ≠

𝑣 ::= 𝑥 | 𝑘 Var./Const.

𝑒0 ::= 𝑣 Var. / Const.
| 𝑣1 𝑜𝑝 𝑣2 Operation
| 𝑥𝑎𝑟𝑟𝑎𝑦 [𝑥𝑖𝑛𝑑𝑒𝑥 ] Array index
| iota 𝑥 [0, . . . , 𝑥 − 1]
| replicate 𝑥𝑛 𝑥 [𝑥, . . . , 𝑥 ]
| if 𝑥 then 𝑒∗ else 𝑒∗ Conditional
| loop (𝑥𝑣𝑎𝑟 [: 𝜏 | 𝑃𝑟𝑒 ]

𝑞
= 𝑥𝑖𝑛𝑖𝑡

𝑞 ) While Loop
while 𝑥𝑐 do 𝑒∗

𝑏𝑜𝑑𝑦

| map (𝜆𝑥𝑒𝑙𝑚𝑞 . 𝑒∗ ) 𝑥𝑎𝑟𝑟𝑎𝑦𝑞 Map
| scan (𝜆𝑥1𝑞 𝑥2

𝑞 . 𝑒∗ ) 𝑘𝑞 𝑥𝑎𝑟𝑟𝑎𝑦
𝑞 Scan

| scatter 𝑥𝑑𝑒𝑠𝑡 𝑥𝑖𝑛𝑑𝑠 𝑥𝑣𝑎𝑙𝑠 Scatter
| 𝐹 𝑥 Apply Fun.

𝑒∗ ::= let (.., 𝑥, ..) = 𝑒0 in 𝑒∗ | (.., 𝑥, ..) Bindings
Notation: 𝑜𝑞 denotes a sequence of 𝑞 objects of some kind, separated by white space or by comma, as dictated by the context.

Fig. 1. Grammar for source language expressions (𝑒∗) and function declarations (𝐹𝑢𝑛).

2 LANGUAGES, ARRAY PROPERTIES AND BIRD’S EYE VIEWOFMAIN COMPONENTS
We describe our system as a static analysis on user-written source code. Accordingly, we begin by
introducing the source language and two running examples in Section 2.1. Section 2.2 presents
an internal language used by our analysis and the bird’s eye view of the architecture. Finally,
Section 2.3 specifies the array properties supported by our system.

2.1 The Source Language of the Analysis and Running Examples
The source language (𝑒∗), with syntax shown in Fig. 1, is a standard purely functional, first-order
expression language, which has been augmented with second-order array combinators, such as map
and scan, and enforces a structure-of-arrays (SoA) layout. For presentation purposes, the language
is in A-normal form [51], meaning (1) let bindings can be seen as a block of statements followed
by a sequence of result variables, and (2) if conditions, loop initializers and function operands are
variables. The types conform with the SoA layout, for example, ( [𝑛]i64, [𝑛]bool) is a valid tuple
type of integer and boolean arrays, both of length 𝑛, but the type [𝑛] (i64, bool) is invalid, because
it uses an array-of-structures (AoS) layout.

Function declaration allows annotating argument types with preconditions (boolean expressions)
and the result type with a postcondition (lambda function from the result type to booleans).
The language has array constructors iota 𝑛, which produces the array [0, . . . , 𝑛 − 1], and

replicate 𝑛 𝑥 , which produces a length-𝑛 array containing 𝑥 at each index. As well as if and while
loops, which are equivalent to tail-recursive functions: the 𝑞 loop parameters 𝑥𝑣𝑎𝑟𝑞 are initialized
with the values of variables 𝑥𝑖𝑛𝑖𝑡𝑞 and are bound to the result of the loop-body expression 𝑒∗

𝑏𝑜𝑑𝑦
for

the remaining iterations. Map and inclusive scan (prefix sum) have standard types and semantics:

map : (𝛼 → 𝛽) → [𝑛]𝛼 → [𝑛]𝛽 scan : (𝛼 → 𝛼 → 𝛼) → 𝛼 → [𝑛]𝛼 → [𝑛]𝛼
map 𝑓 [𝑥0, . . . , 𝑥𝑛−1] = [𝑓 𝑥0, . . . , 𝑓 𝑥𝑛−1] scan ⊙ 𝑛𝑒⊙ [𝑥0, . . . , 𝑥𝑛−1] = [𝑥0, . . . , 𝑥0 ⊙ . . . ⊙ 𝑥𝑛−1]

But they adhere to the SoA layout: their lambda functions determine an arbitrary number of results,
and they accept a matching number of arguments; ⊙ must be associative with neutral element 𝑛𝑒⊙ .
Finally, scatter is a bulk-write operator of type [𝑛]𝛼 → [𝑚]𝑖64→ [𝑚]𝛼 → [𝑛]𝛼 and impera-

tive semantics: scatter 𝑑𝑠𝑡 𝑖𝑠 𝑣𝑠 ≡ for 𝑖 = 0 . . .𝑚 − 1 { if (0 ≤ 𝑖𝑠 [𝑖] < 𝑚) 𝑑𝑠𝑡 [𝑖𝑠 [𝑖]] := 𝑣𝑠 [𝑖] }.
That is, scatter updates𝑑𝑠𝑡 in place at indices 𝑖𝑠 with the corresponding values from 𝑣𝑠 , but ignores
updates to indices that are out of bounds in 𝑑𝑠𝑡 . Its pure semantics and 𝑂 (𝑚) work asymptotic
are ensured by a type checking technique that builds on uniqueness types [31]. To match the
imperative, deterministic semantics, scatter must be idempotent. We can ensure this by requiring
any duplicate indices in 𝑖𝑠 to correspond to equal values in 𝑣𝑠 :

, Vol. 1, No. 1, Article . Publication date: July 2025.



4 Nikolaj Hey Hinnerskov, Robert Schenck, and Cosmin E. Oancea

1 let sum [n] (xs: [n]i64) =
2 if n > 0 then (scan (+) 0 xs)[n−1] else 0
3

4 def partition2 [n] (p: f64 −> bool) (xs: [n]f64)
5 : (i64, [n]f64) | \ (m,ys) −>
6 m == sum ( map i64.bool (map p xs) )
7 && FiltPart ys xs (\_−>true) (\i−> p xs[i]) =
8 let cs =map (\x −> p x) xs
9 let flagsT = map (\c −> if c then 1 else 0) cs

10 let flagsF = map (\b −> 1 − b) flagsT
11 let indicesT = scan (+) 0 flagsT
12 let num_true = if n > 0 then indicesT[n−1] else 0
13 let tmp = scan (+) 0 flagsF
14 let indicesF = map (\t −> t + num_true) tmp
15 let indices = map3 (\c t f −> if c then t−1 else f−1)
16 cs indicesT indicesF
17 let zeros = replicate n 0
18 let ys = scatter zeros indices xs
19 in (num_true, ys)

⇐= Demo
p = \ x −> x < 5,
xs= [5,4,2,8,7,3]
n = 6
[F, T, T, F, F,T]
[0, 1, 1, 0, 0, 1]
[1, 0, 0, 1, 1, 0]
[0, 1, 2, 2, 2, 3]
3
[1, 1, 1, 2, 3, 3]
[4, 4, 4, 5, 6, 6]
[3, 0, 1, 4, 5, 2]

[0, 0, 0, 0, 0, 0]
[4, 2, 3, 5, 8, 7]

1def sgmSum [n] (flags: [n]bool) (xs: [n]i64) : [n]i64 =
2let (_, ys) = scan (\ f1 v1 f2 v2 −> let f = fx || fy
3let v = if fy then vy else vy + vx
4in (f, v) ) false 0i64 flags xs in ys
5def mkSgmDescr [m] (shape: [m]i64 | Range shape (0,∞))
6(xs: [m]i64) : []t | (\flags −> length flags == sum shape) =
7let rot = map (\i −> if i==0 then 0 else shape[i−1]) (iota m)
8let scn = scan (+) 0i64 shp_rot
9let ind = map2 (\s i −> if s<=0 then −1 else i) shape shp_scn
10let len = if m > 0 then shp_scn[m−1] + shape[m−1] else 0
11let res = scatter (replicate len 0) ind xs in res
12−− Example: shape=[0,2,1,0,3] & xs=[1,2,3,4,5]⇒ res=[2,0,3,5,0,0]
13def mkII [m] (shape: [m]i64 | Range shape (0,∞))
14: []i64 | (\II −> length II == sum shape) =
15let beg_vs =map (\i −> i + 1) (iota m) −− [1,2,3,4,5]
16let sct_vs1= mkSgmDescr shape beg_vs −− [2,0, 3, 5,0,0]
17let sct_vs = map (\v −> if v == 0 then 0 else v−1) scat_vs1
18let flags =map (\f −> f > 0) scat_vs −− [T,F, T, T,F,F]
19let II = sgmSum flags scat_vs in II −− [1,1, 2, 4,4,4]

Fig. 2. Running Examples: two-way partitioning (left) with demo (center) & building flag and II arrays (right).

0 ≤ 𝑖1 < 𝑚 ∧ 0 ≤ 𝑖2 < 𝑚 ∧ 0 ≤ 𝑖𝑠 [𝑖1] < 𝑛 ∧ 0 ≤ 𝑖𝑠 [𝑖2] < 𝑛 ∧ 𝑖𝑠 [𝑖1] = 𝑖𝑠 [𝑖2] ⇒ 𝑣𝑠 [𝑖1] = 𝑣𝑠 [𝑖2] .
However, this is not verified in Futhark, neither statically nor dynamically; our work enables static
verification of scatter and of array indexing (mostly verified by dynamic assertions), among others.

Our implementation uses Futhark’s source language [31, 32], which is neither in A-normal form
nor uses an SoA layout. For clarity, we elide the details of the transformation into this form, which is
automatically performed in later compilation stages [26]. In particular, we support passing predicates
as arguments to functions to enable general expression of filtering/partitioning properties.
Futhark has support for size-dependent types [2, 28], but size equality is purely syntactical:
[𝑛 +𝑚]𝜏 ≠ [𝑚 + 𝑛]𝜏 . Our work naturally extends the expressible size dependencies using pre- and
postconditions. The modifications needed to accommodate pre- and postconditions are standard:
preconditions are verified and postconditions are assumed at call sites, and vice versa for function
declarations. A property assigned to a loop parameter is verified on the loop initializer; then the
property is assumed on the parameter and is verified on the corresponding loop-body result.

Running Examples. Figure 2 shows two code examples that are illustrative for the functional
data-parallel programming style, where the computation is separated (fissed) into a sequence of
bulk-parallel operations. Many such operations manipulate integral arrays that are eventually used
for indirect indexing in gather and scatter operations. For example, the code on the left implements
a two-way partitioning of an array 𝑥𝑠 based on a predicate 𝑝: the predicate is first mapped across
the elements of 𝑥𝑠 and the integral result (𝑓 𝑙𝑎𝑔𝑠𝑇 ) is scanned, resulting in array 𝑖𝑛𝑑𝑖𝑐𝑒𝑠𝑇 that holds
the indices at which the elements that succeed should be scattered plus one. The failing indices
are treated similarly, resulting in 𝑖𝑛𝑑𝑖𝑐𝑒𝑠𝐹 . The final indices are put together by the map operation
at line 15, and, finally, the partitioned arrays is computed by the scatter at line 15. This makes
it more challenging to verify the partitioning property than in sequential languages, where the
computation is, e.g., aggressively fused into a fold, whose accumulator maintains separate lists of
succeeding and failing elements, thus allowing to track the property across each statement. The
post conditions of partition2 are that the split point𝑚 is equal to the number of elements that
succeed under 𝑝 and that the result is a partitioning of 𝑥𝑠 (as detailed in Section 2.3).
The right hand side of Fig. 2 shows helper functions that are used in flattened/segmented

computations:𝑚𝑘𝑆𝑔𝑚𝐷𝑒𝑠𝑐𝑟 takes as arguments the shape of a jagged array—which is allowed
to have empty segments (the precondition only requires non-negative elements)—and an array

, Vol. 1, No. 1, Article . Publication date: July 2025.



Verifying Properties of Index Arrays in a Purely-Functional Data-Parallel Language 5

𝑐 ::= 𝑥 Variable
| 𝑛 Integer
| 𝑥 [𝑒 ] Indexing
| ∑𝑒

𝑥=𝑒 (𝑐 ) Sum
| 𝑥−1 𝑥 [𝑥−1 [𝑖 ] ] = 𝑖

| ∞ Special:∞ ∉ Z
| ⟲ Recurrence
| 𝑒 ⊙ 𝑒 Comparison
| ¬𝑐 Logicals
| 𝑐 ∧ 𝑐 | 𝑐 ∨ 𝑐

𝑡 ::= 𝑐 | 𝑐 · 𝑡 Term
𝑒 ::= 𝑡 | 𝑡 + 𝑒 Polynomial
𝑔 ::= 𝑐 ⇒ 𝑒 | 𝑔∧𝑔 Guarded expr.

𝐷 ::= for 𝑥 < 𝑒 |
𝑒⋃

𝑘=0
.𝑥 ≥ 𝑒 Lin/Sgm dom.

𝑖𝑥 𝑓 𝑛 ::= 𝐷. 𝑔 Index function

| (for 𝑥 < 𝑒.𝑔) ∪ (
𝑒⋃

𝑘=1
.𝑥 ≥ 𝑒 ∝ 𝑒. 𝑔)

⊙ ::= < | ≤ | > | ≥ | = | ≠

Notation:
𝑖, 𝑗, 𝑘 integral iterators
𝑣, 𝑤 enumeration bounds
ℎ, 𝑙 ct-range iterators
𝑥, 𝑦, 𝑧 array variables
𝑒 {𝑥 ↦→ 𝑒𝑥 } substitutes 𝑥

for 𝑒𝑥 in 𝑒
𝑣∧

ℎ=1
(𝑐ℎ ⇒ 𝑒ℎ ) denotes

𝑐1 ⇒ 𝑒1
∧

. . .
∧
𝑐𝑣 ⇒ 𝑒𝑣

Fig. 3. Grammar for symbols (𝑐), polynomials (𝑒), guarded expressions (𝑔), and index functions (𝑖𝑥 𝑓 𝑛).

𝑥𝑠 of matching length. It returns a flat array of length equal to the sum of the shapes (see the
postcondition), such that each non-empty segment starts with the corresponding element of 𝑥𝑠 and
the rest of the segment is zeroed. For example, if 𝑠ℎ𝑎𝑝𝑒 = [0, 2, 1, 0, 3] and 𝑥𝑠 = [1, 2, 3, 4, 5] then
𝑚𝑘𝑆𝑔𝑚𝐷𝑒𝑠𝑐𝑟 𝑠ℎ𝑎𝑝𝑒 𝑥𝑠 = [2, 0, 3, 5, 0, 0]. Note that empty segments pass negative indices (line 9)
to scatter, which are ignored (otherwise WAW races would violate its deterministic semantics).

Similarly,𝑚𝑘𝐼𝐼 in Fig. 2 takes as argument a shape array and produces a flat array of that shape
in which each element is assigned the index of the segment in which it resides. For example, if
𝑠ℎ𝑎𝑝𝑒 = [0, 2, 1, 0, 3] then𝑚𝑘𝐼𝐼 𝑠ℎ𝑎𝑝𝑒 = [1, 1, 2, 4, 4, 4]. We will name this array 𝐼 𝐼 henceforth.
The implementation uses𝑚𝑘𝑆𝑔𝑚𝐷𝑒𝑠𝑐𝑟 (line 16) to inscribe the index of each non-empty segment
at the start of the segment (line 17), i.e., [1, 0, 2, 4, 0, 0], and then propagates the start element
throughout the segment by using a segmented scan [6] (line 19), which is implemented as a scan
with a lifted operator (line 1). Note that there are no standard properties that accurately summarize
the results of𝑚𝑘𝐼𝐼 and𝑚𝑘𝑆𝑔𝑚𝐷𝑒𝑠𝑐𝑟 , albeit their content can be easily described as index functions.

2.2 Index-Function Representation and Bird’s Eye View of Architecture
Figure 3 presents the grammar for the internal languages. A symbol (𝑐) can be a variable name, an
integer constant, array indexing, a sum of symbols, an inverse array (i.e., 𝑥−1 [𝑥 [𝑖]] = 𝑥 [𝑥−1 [𝑖]] = 𝑖;
see Section 4), a special∞ symbol used for pattern matching, a recurrence (needed transiently to
represent scans—see Section 4), a comparison, or a Boolean operation. All constants are integers;
in Boolean operations 0 is considered false, and 1 is considered true.2 We normalize addition and
multiplication on symbols into multivariate polynomials (𝑒)—for instance, 7+2 ·𝑥2 ·𝑦3+3 ·𝑥 ·𝑦 ·𝑧2—in
which the order of symbols in a term and the order of terms in a polynomial are syntactically and
semantically irrelevant.3 If symbols are restricted to variable names, the representation is strongly
normalizing: two expressions are semantically equivalent iff they are syntactically equal. As it is, it
is not (e.g.,

∑5
𝑖=0 (𝑥 [𝑖]) is equivalent to

∑4
𝑖=0 (𝑥 [𝑖]) + 𝑥 [5]), albeit our simplification engine attempts

to keep them as normalized as possible (see Section 5.3).
Index functions are represented by an iteration domain (𝐷) followed by a finite set of guarded

expressions (𝑔) delimited by
∧
. The guards partition the domain, such that the expression whose

guard is true (non-zero) provides the value at each index of the domain. For example, variable rot
at line 7 in Fig. 2 has index function for 𝑖 < 𝑚. (𝑖 = 0⇒ 0)∧(𝑖 ≠ 0⇒ shape[𝑖 − 1]). Consequently,
we maintain that guards are mutually exclusive and their disjunction is a tautology. We treat scalars
as arrays of length one and in guards we may write true and false for 1 and 0, for clarity.

Domains. We define three kinds of domains. A linear domain has form 𝑓 𝑜𝑟 𝑖 < 𝑒𝑛 and denotes
that iterator 𝑖 takes values in 0 . . . 𝑒𝑛 − 1. A segmented domain

⋃𝑒𝑚

𝑘=0 𝑗 ≥ 𝑒𝑘 requires that 𝑒𝑘 is

2This treatment lets us sum over boolean symbols, for example, a sum over the number of true guards in an index function.
3A term is implemented as a multiset and a polynomial as a mapping that binds each term to its integer coefficient.

, Vol. 1, No. 1, Article . Publication date: July 2025.



6 Nikolaj Hey Hinnerskov, Robert Schenck, and Cosmin E. Oancea

Infer Index Functions (InfIxf)
Γ maps variable names to IxFn

• Static Analysis for Inferring
Index Functions (IxFn) from
Source Language

• Inference Rules Use the
Properties Recorded in Δ

−→

←−

Property Manager (PM)
Δ maps variable names to properties

• Verifies Properties of IxFns by
Translating them to a Set of
Sufficient-ConditionQueries

• Verifies/Infers Properties at a
High Level, e.g., on Loop Results

←−

−→

Query Solver (QS)

Uses the Symbol Tables in Δ,
e.g., Ranges, Eqivalences,
Monotonicity, Injectivity,
to Solve an Ineqality or
an Eqation in the Poly
Representation.

Fig. 4. Bird’s Eye View of the Three Logical Components of the Framework, which are deeply connected.

(non-strictly) monotonic in 𝑘 and 𝑒𝑘 {𝑘 ↦→ 0} = 0, and denotes the union of integral intervals
[𝑒𝑘 , 𝑒𝑘+1), where 𝑘 = 0 . . . 𝑒𝑚 and 𝑒𝑘+1 = 𝑒𝑘 {𝑘 ↦→ 𝑘 + 1}. The representation has two key properties:

1 Permitting empty intervals is essential to expressing jagged arrays such as the 𝐼 𝐼 result of
𝑚𝑘𝐼𝐼 in Fig. 2 as:

⋃𝑚−1
𝑘=0 𝑗 ≥ ∑𝑘−1

𝑘 ′=0 (𝑠ℎ𝑎𝑝𝑒 [𝑘 ′]). true ⇒ 𝑘 or the result of𝑚𝑘𝑆𝑔𝑚𝐷𝑒𝑠𝑐𝑟 as⋃𝑚−1
𝑘=0 𝑗 ≥ ∑𝑘−1

𝑘 ′=0 shape[𝑘 ′] . ( 𝑗 =
∑𝑘−1

𝑘 ′=0 shape[𝑘 ′] ⇒ 𝑥𝑠 [𝑘]) ∧ ( 𝑗 > ∑𝑘−1
𝑘 ′=0 shape[𝑘 ′] ⇒ 0)

2 A segmented index function
⋃𝑒𝑚

𝑘=0 𝑖 ≥ 𝑒𝑘 . 𝑔 can always be translated to a linear domain by
using the 𝐼 𝐼 array, which records at some index 𝑖 the segment in which 𝑖 resides, i.e., 𝑘 = 𝐼 𝐼 [𝑖].
The linear translation is thus 𝑓 𝑜𝑟 𝑖 < 𝑒𝑘 {𝑘 ↦→ 𝑒𝑚 + 1}. 𝑔{𝑘 ↦→ 𝐼 𝐼 [𝑖]}.

The third kind models interval [0, 𝑒𝑛) as the union of a linear domain with a segmented one:
(for 𝑖 < 𝑒0. 𝑔

𝑙𝑖𝑛) ∪ (⋃𝑒𝑚

𝑘=1 . 𝑗 ≥ 𝑒𝑘 ∝ 𝑒𝑛 . 𝑔𝑠𝑔𝑚) denotes a first interval [0, 𝑒0) in linear form and 𝑒𝑚
intervals [𝑒𝑘 , 𝑒𝑘+1) in segmented form. Denoting by 𝑒𝑚 = 𝑒𝑘 {𝑘 ↦→ 𝑒𝑚}, the last interval is [𝑒𝑚, 𝑒𝑛),
and it must hold that 𝑒𝑚 ≤ 𝑒𝑛 and 𝑒0 = 𝑒𝑘 {𝑘 ↦→ 0}. This kind is motivated by the case of scattering
at the positions of 𝑒𝑚 positive and monotonic indices, which naturally produces 𝑒𝑚 + 1 intervals.

Extensions. Potential useful extensions of index functions include allowing arbitrary union of linear
and segmented domains that can be achieved with the grammar extension:

𝐷 ::= for < 𝑒 | ∪𝑒
𝑘=𝑒
≥ 𝑒 𝑆 ::= 𝐷.𝑔 | 𝑆 ∪ 𝑆 𝑖𝑥 𝑓 𝑛 = Dim 𝑥 < 𝑒. 𝑆

which also allows a general representation of multi-dimensional array by nesting domains; our
implementation supports the simple case of 2D arrays having linear domains on each dimension.
Finally, the index function may be lifted to support guards that are invariant to the domain iterators,
i.e., 𝑖𝑥 𝑓 𝑛𝑔𝑒𝑛 ::= (𝑐 ⇒ 𝑖𝑥 𝑓 𝑛) | 𝑖𝑥 𝑓 𝑛𝑔𝑒𝑛 ∧ 𝑖𝑥 𝑓 𝑛𝑔𝑒𝑛 , which would improve the treatment of if
expressions. The treatment of these extensions is tedious, but relatively straightforward, i.e., they
can be reasoned by combining the treatments of linear and segmented domains.

Architectural Components. The verification analysis is performed during one traversal of the source
program, but is split into three connected logical components, summarized in Fig. 4.

InfIxf (left) corresponds to static analysis of function declarations in AoS, A-Normal form that
infers index-function representations for the scalar and array variables of integral base types (and
for other types in special cases). These are recorded in the symbol table Γ. InfIxf’s inference rules
commonly require verification of simple (in)equalities, which are delegated to the query solver
(QS), while challenging constructs such as scatter, also require monotonicity or bijectivity.

The second component, the property manager (PM), handles the recording and verification of
properties, such as ranges, equivalences, monotonicity, injectivity, bijectivity, filtering/partitioning.
Properties are recorded into corresponding symbol tables, aggregated in Δ. Properties are verified
by translating them into a set of simple queries, which form a sufficient condition for the target
property to hold and which are sent to the query solver. Importantly, PM attempts to infer certain
properties at a high level, in the absence of an index function, e.g., filtering/partitioning an injective
array results in an injective array. This enables scaling the analysis, e.g., across loops, which, unless

, Vol. 1, No. 1, Article . Publication date: July 2025.



Verifying Properties of Index Arrays in a Purely-Functional Data-Parallel Language 7

A segmented shape (𝑒𝑚, 𝑘, 𝑒𝑘 ) assumes that 0 ≤ 𝑘 ≤ 𝑒𝑚 , 𝑒𝑘 is monotonically increasing in 𝑘 , and 𝑒0 = 𝑒𝑘 {𝑘 ↦→ 0} = 0.

Notation: 𝑒𝑘+1 =
{
𝑒𝑛 if 𝑒𝑚 = 0 (only one segment)
𝑒𝑘 {𝑘 ↦→ 𝑘 + 1} if 𝑒𝑚 > 0 (multiple segments)

Rcd, Img =

{
denotes an integral interval
can be generalized, e.g, union of slices

Property Known Semantics
𝑀𝑜𝑛𝑜𝑡𝑜𝑛𝑖𝑐⊙ 𝑋 𝑋 : [𝑒𝑛 ]𝑖𝑛𝑡 0 ≤ 𝑖 < 𝑗 < 𝑒𝑛 − 1 ⇒ 𝑋 [𝑖 ] ⊙ 𝑋 [ 𝑗 ]
⊙ ∈ {≤,<, ≥,>}

𝑅𝑎𝑛𝑔𝑒 𝑋 (𝑒𝑙𝑏 , 𝑒𝑢𝑏 ) 𝑋 : [𝑒𝑛 ]𝑖𝑛𝑡 0 ≤ 𝑖 < 𝑒𝑛 ⇒ 𝑒𝑙𝑏 ≤ 𝑋 [𝑖 ] ≤ 𝑒𝑢𝑏

𝐸𝑞𝑢𝑖𝑣 𝑋 𝑒 𝑋 has an index function equivalent with the one derived from 𝑒

𝑂𝑟𝑡ℎ𝑜𝑔𝑃𝑟𝑒𝑑𝑠 ℎ = 1 . . . 𝑣 ∀(ℎ1 ≠ ℎ2 ) : 0 ≤ 𝑘 ≤ 𝑒𝑚 ∧ 𝑒𝑘 ≤ 𝑖 < 𝑒𝑘+1 ⇒ ¬(𝑝ℎ1 (𝑖 ) ∧ 𝑝ℎ2 (𝑖 ) )
(𝑒𝑚, 𝑘, 𝑒𝑘 ) 𝑝ℎ

𝐼𝑛 𝑗 𝑋 Rcd 𝑋 : [𝑒𝑛 ]𝑖𝑛𝑡 (0 ≤ 𝑗 < 𝑖 < 𝑒𝑛 ∧ 𝑋 [𝑖 ] ∈ Rcd ∧ 𝑋 [ 𝑗 ] ∈ Rcd) ⇒ 𝑋 [𝑖 ] ≠ 𝑋 [ 𝑗 ]
𝐵𝑖 𝑗 𝑋 Rcd 𝑋 : [𝑒𝑛 ]𝑖𝑛𝑡 𝐼𝑛 𝑗 𝑋 Rcd ∧
(𝑒𝑚, 𝑘, 𝑒𝑘 ,Img𝑘 ) Img𝑘

set
= {𝑋 [𝑖 ] | 𝑒𝑘 ≤ 𝑖 < 𝑒𝑘+1 ∧ 𝑋 [𝑖 ] ∈ Rcd}

𝐹𝑖𝑙𝑡𝑃𝑎𝑟𝑡 𝑌 𝑋 𝑋 : [𝑒𝑛 ]𝜏 𝑂𝑟𝑡ℎ𝑜𝑔𝑃𝑟𝑒𝑑𝑠 (𝑒𝑚, 𝑘, 𝑒𝑘 ) (𝑝𝑝1 , . . . , 𝑝
𝑝
𝑣 ) ∧

(𝑒𝑚, 𝑘, 𝑒𝑘 ,𝑝
𝑓 , 𝑝

𝑝

ℎ
) 𝑌 : [𝑒𝑦 ]𝜏 𝑌 ≡ map ( 𝜆𝑘 → let 𝜎 = filter 𝑝 𝑓 [𝑒𝑘 , .., 𝑒𝑘+1 − 1]

ℎ = 1 . . . 𝑣 let 𝜎 ′ = partition𝑣 (𝑝
𝑝

ℎ
) 𝜎

in map (𝜆𝑖 → 𝑋 [𝑖 ] ) 𝜎 ′ ) [0, .., 𝑒𝑚 − 1] | > flatten

𝐼𝑛𝑣𝐹𝑖𝑙𝑡𝑃𝑎𝑟𝑡 𝑋 Img 𝑋 : [𝑒𝑛 ]𝑖𝑛𝑡 𝑂𝑟𝑡ℎ𝑜𝑔𝑃𝑟𝑒𝑑𝑠 (𝑒𝑚, 𝑘, 𝑒𝑘 ) (𝑝𝑝1 , . . . , 𝑝
𝑝
𝑣 ) ∧

(𝑒𝑚, 𝑘, 𝑒𝑘 ,𝑝
𝑓 , 𝑝

𝑝

ℎ′ ) ℎ′ = 1..𝑣-1 𝐵𝑖 𝑗 𝑋 Img ( (0, 𝑘, 0), Img) ∧ |Img | = ∑𝑒𝑚

𝑘=0 (
∑𝑒𝑘+1−1

𝑖=𝑒𝑘
(𝑝 𝑓 (𝑖 ) ) ) ∧

𝑝𝑣 = ¬(𝑝1∨ ( 0 ≤ 𝑘1 < 𝑘2 ≤ 𝑒𝑚 ∧ 𝑒𝑘1 ≤ 𝑗1 < 𝑒𝑘1+1 ≤ 𝑒𝑘2 ≤ 𝑗2 < 𝑒𝑘2+1 ∧ 𝑝
𝑓 ( 𝑗1,2 ) ⇒ 𝑄 ) ∧

. . . ∨ 𝑝𝑣−1 ) (∀ℎ : 0 ≤ 𝑘 ≤ 𝑒𝑚 ∧ 𝑒𝑘 ≤ 𝑗1 < 𝑗2 < 𝑒𝑘+1 ∧ 𝑝𝑝ℎ ( 𝑗1,2 ) ∧ 𝑝
𝑓 𝑗1,2 ⇒ 𝑄 ) ∧

ℎ = 1 . . . 𝑣 (∀ (ℎ1 < ℎ2 ) : 0 ≤ 𝑘 ≤ 𝑒𝑚 ∧ 𝑒𝑘 ≤ 𝑗1,2 < 𝑒𝑘+1 ∧ 𝑝𝑝ℎ1 ( 𝑗1 ) ∧ 𝑝
𝑝

ℎ2
( 𝑗2 ) ∧ 𝑝 𝑓 ( 𝑗1,2 ) ⇒ 𝑄 )

where𝑄 denotes the query 𝑋 [ 𝑗1 ] < 𝑋 [ 𝑗2 ]

Fig. 5. Array Properties. 𝑋,𝑌, 𝜎 are array variables; 𝑝 denotes a predicate in lambda form of type 𝑖𝑛𝑡 → 𝑏𝑜𝑜𝑙 .

trivial, cannot produce useful index functions for their results. Finally, the query solver (QS) uses
the properties in Δ to solve (in)equalities by extending Fourier-Motzkin elimination to work in the
presence of symbols such as array indexing and sums of array slices.

2.3 Array Properties
Figure 5 presents the array properties supported by our system. We ignore, for the moment, the
gray text, 𝑒𝑚, 𝑘, 𝑒𝑘 , which will be explained later. Increasing and decreasing (strict) monotonicity
is standard, as is the range of an array element, except that the bounds are in polynomial repre-
sentation. 𝐸𝑞𝑢𝑖𝑣 expresses equivalences, and it is mostly used for scalars, e.g., the post-condition
m == sum ( map i64.bool (map p xs) ) at line 6 in Fig. 2.𝑂𝑟𝑡ℎ𝑜𝑔𝑃𝑟𝑒𝑑𝑠 requires that the argument
predicates are pairwise mutually exlcusive. The implementation supports simple predicates by
solving queries as directed by their index functions.
𝐼𝑛 𝑗 𝑋 Rcd says that array 𝑋 is injective, if it is restricted to the indices that map to values within

the restricted co-domain Rcd (specified as a range). This is motivated by scatter dst is _ which
ignores the values in 𝑖𝑠 that are outside the bounds of dst; if all out-of-bounds values in is are∞,
and the remaining values are unique, then 𝐼𝑛 𝑗 𝑖𝑠 [−∞,∞) holds and scatter is safe. 𝐵𝑖 𝑗 𝑋 Rcd Img
similarly says that restricting 𝑋 to co-domain Rcd results in a subarray that is bijective in Img. It
follows that Img ⊆ Rcd and the bijective subarray has no values in Rcd − Img.

𝐹𝑖𝑙𝑡𝑃𝑎𝑟𝑡 𝑌 𝑋 𝑝 𝑓 𝑝𝑝
𝑣−1 declares that the array 𝑌 is equivalent to filtering (the indices of) 𝑋 with

𝑝 𝑓 : 𝑖𝑛𝑡 → 𝑏𝑜𝑜𝑙 and then performing a 𝑣-way partitioning with the pairwise mutually exclusive
predicates 𝑝𝑝 , i.e., the elements that succeed under 𝑝𝑝1 come before the ones that succeed under 𝑝𝑝2
and so on. By convention, if no filtering is performed, then 𝑝 𝑓 _ = true and an unknown filtering is
represented by 𝑝 𝑓 _ = false. 𝑝𝑝 is similar, except that an empty sequence also means unknown.

Verification of the previous property is enabled by 𝐼𝑛𝑣𝐹𝑖𝑙𝑡𝑃𝑎𝑟𝑡 𝑍 [0, 𝑒𝑛) 𝑝 𝑓 𝑝𝑝
𝑣−1, which essen-

tially declares that 𝑍 is an array of indices such that let Y = scatter Y0 Z X (where 𝑌0 : [𝑒𝑛]𝜏),

, Vol. 1, No. 1, Article . Publication date: July 2025.



8 Nikolaj Hey Hinnerskov, Robert Schenck, and Cosmin E. Oancea

results in a filter-partitioning of 𝑋 with predicates 𝑝 𝑓 and 𝑝𝑝 , i.e., 𝐹𝑖𝑙𝑡𝑃𝑎𝑟𝑡 𝑌 𝑋 𝑝 𝑓 𝑝𝑝
𝑣−1. The

semantics is that (1) 𝑍 restricted to co-domain [0, 𝑒𝑛) is bijective in interval image [0, 𝑒𝑛), (2) the
number of indices that succeed under 𝑝 𝑓 equals 𝑒𝑛 , (3) for any ℎ = 1 . . . 𝑣 , the indices that succeed
under both 𝑝 𝑓 and 𝑝

𝑝

ℎ
have monotonically increasing values, and (4) for all pairs (ℎ1 < ℎ2) the

values of the indices succeeding under 𝑝 𝑓 and 𝑝𝑝
ℎ1

are smaller than the ones that succeed under 𝑝 𝑓

and 𝑝ℎ2 . For example, in function partition2 of Fig. 2, variable indices at line 15 has index function:

for 𝑖 < 𝑛 . (𝑐𝑠 [𝑖] ⇒ −1 +∑𝑖
𝑗=0 (𝑐𝑠 [ 𝑗])) ∧ (¬𝑐𝑠 [𝑖] ⇒ 𝑖 +∑𝑛−1

𝑗=1+𝑖 (𝑐𝑠 [ 𝑗])) where 𝑐𝑠 [𝑖] = 𝑝 (𝑥 [𝑖])
which can be shown to satisfy 𝐼𝑛𝑣𝐹𝑖𝑙𝑡𝑃𝑎𝑟𝑡 indices [0, 𝑛) (\_ → true) (\𝑖 → 𝑝 𝑥 [𝑖]), i.e., the
partitioning predicate is identified from the guards. The next line performs the scatter and yields
the result of partition2 on which the filtering-partitioning post-condition holds.

The gray text 𝑒𝑚, 𝑘, 𝑒𝑘 in Fig. 5 extends the properties𝑂𝑟𝑡ℎ𝑜𝑔𝑃𝑟𝑒𝑑𝑠 , 𝐵𝑖 𝑗 , 𝐹𝑖𝑙𝑡𝑃𝑎𝑟𝑡 and 𝐼𝑛𝑣𝐹𝑖𝑙𝑡𝑃𝑎𝑟𝑡
to cover the segmented case, i.e., where 𝑘 is a bound variable taking values in 0 . . . 𝑒𝑚 , and 𝑒𝑘
is a monotonically increasing sequence in 𝑘 that denotes the union of segments. For example,
𝐵𝑖 𝑗 𝑋 Rcd (𝑒𝑚, 𝑘, 𝑒𝑘 , Img𝑘 ) denotes that restricting 𝑋 to co-domain Rcd results in a per-segment
bijective image Img, where Img may depend on 𝑘 , but Rcd does not. In the source language, the
post/preconditions referring to segmented arrays require to bind 𝑘 as a lambda argument, e.g, a
bijective precondition on argument 𝑋 is expressed as: 𝐵𝑖 𝑗 𝑋 (𝑒𝑙𝑏Rcd, 𝑒

𝑢𝑏
Rcd) (𝑒

𝑚, \𝑘 → (𝑒𝑘 , 𝑒𝑙𝑏Img, 𝑒
𝑢𝑏
Img)).

Possible generalizations include, for example, extending the interval co-domains to a finite union
of slices or lmads [37, 47] or allowing the range of an element to depend on its index.

3 VERIFYING ARRAY PROPERTIES FROM THEIR INDEX FUNCTION
Section 3.1 introduces notation and the rationale of the design, Section 3.2 presents the verification
of injective, bijective and filtering-partitioning properties (simpler properties such as ranges and
monotonicity are omitted for brevity), and Section 3.3 presents further automation for inferring
properties at a high level, in the absence of an index function.

3.1 Rationale of the Design and Notation
The rationale of the design is to define a small set of properties that (1) are accessible to the
non-expert user under a gentle learning curve, (2) are known to the compiler, and (3) expose a
compositional algebra that allows the compiler to scale/automate the analysis as much as possible
without the user’s intervention. However, the user’s involvement is key to verification, not only in
specifying the properties of the code, but also in performing strategic modifications/annotations
that are rooted in the observation that it is much easier to verify a property than to infer it: e.g., it
is easier to verify that array elements are within a given range than to infer the range.
As such, the user can guide the analysis by breaking a program into multiple functions that

are annotated with pre- and postconditions—including equivalences on array sizes that enable
unification of properties across if-expressions. This is facilitated by an architectural design that
provides facilities to inspect the relevant index functions and environment in order to reason about
whether a given property is actually provable or additional properties need to be specified.

The paper uses the following notation:

• FV(𝑜)/BV(𝑜) denote the free/bound variables of an object 𝑜 . We write “𝑜 unifies with 𝑜 ′”
if 𝑜 and 𝑜 ′ are syntactically identical up to the names of bound variables [54]. Bound variables
appear in sums and segmented domains, for example, 𝑥1 is bound in

∑𝑒2
𝑥1=𝑒1 (𝑠1).

• We use Γ;Δ ⊢ 𝑓 { 𝑓 ′ and Γ;Δ ⊢ 𝑒 { 𝑒′ to denote simplification of index functions and
expressions.We assume that both are already in simplified form (see Section 5), and operations
and substitutions such as 𝑒1 − 𝑒2 and 𝑒{𝑘 ↦→ 𝑒𝑘 } also simplify the result.

, Vol. 1, No. 1, Article . Publication date: July 2025.



Verifying Properties of Index Arrays in a Purely-Functional Data-Parallel Language 9

• The algebraic environment Δ is seen as a record whose fields are symbol tables, named after
the corresponding properties, e.g., Δ.𝐼𝑛 𝑗 denotes injectivity and the new environment created
by adding binding 𝑥 ↦→ Rcd to Δ.𝐼𝑛 𝑗 is denoted by: Δ with 𝐼𝑛 𝑗 = Δ.𝐼𝑛 𝑗 ∪ {𝑥 ↦→ Rcd}.
• In other places we are less explicit: Δ ∧ (𝑒𝑥 = 𝑒𝑦) ∧ (𝑒1 ≤ 𝑒2 < 𝑒3) denotes extending the
equivalence symbol table Δ.𝐸𝑞𝑢𝑖𝑣 with bindings derived from 𝑒𝑥 = 𝑒𝑦 and the ranges table
Δ.𝑅𝑎𝑛𝑔𝑒 with the bindings derived from inequalities 𝑒1 ≤ 𝑒2, 𝑒2 < 𝑒3 and 𝑒1 < 𝑒3, as explained
in Section 5. The last inequality 𝑒1 < 𝑒3 is not necessarily subsumed by the other two, e.g.,
assuming a positive shape and 𝑘 ,

∑𝑘−1
𝑘 ′=0 (shape[𝑘 ′]) ≤ 𝑗 <

∑𝑘
𝑘 ′=0 (shape[𝑘 ′]) would result in

the last inequality being simplified to shape[𝑘] > 0, which would improve the lower bound
of symbol shape[𝑘] to be 1 rather than 0.
• For convenience, we also define the shorthand notation below for extending Δ with the
inequalities assumed by 𝑖𝑥 𝑓 𝑛’s domains, where 𝑒𝑘+1 = 𝑒𝑘 {𝑘 ↦→ 𝑘 + 1} and 𝑒𝑠𝑧 = 𝑒𝑘+1 − 𝑒𝑘 :
Δ+for 𝑖<𝑒𝑛 = Δ ∧ 0 ≤ 𝑖 < 𝑒𝑛 and Δ+∪

𝑒𝑚

𝑘=0 𝑗≥𝑒𝑘 = Δ ∧ 0 ≤ 𝑘 ≤ 𝑒𝑚 ∧ 𝑒𝑘 ≤ 𝑗 < 𝑒𝑘+1 ∧ 0 ≤ 𝑒𝑠𝑧

• Queries are marked in gray , use the notation Δ ⊢ 𝑐1 ?⇒ 𝑐2 and succeed when it can be
shown that 𝑐1 implies 𝑐2 in context Δ. Queries proceed by converting 𝑐1 to DNF (i.e., 𝑐1 =
𝑐11 ∨ . . . ∨ 𝑐1𝑞), and then asking the solver to prove 𝑐2 in contexts Δ ∧ 𝑐1𝑖 where 𝑖 = 1 . . . 𝑞. The
query succeeds if all 𝑞 sub-queries succeed.

3.2 Verifying Injectivity and Bijectivity of Index Functions
Figure 6 presents the inference rules that verify injective and bijective properties. Rules BijV1 and
BijV2 take the form Γ;Δ ⊢ (𝑥, Rcd, (𝑘, Img))

𝐵𝑖 𝑗
→ (bool,Δ′) that answers whether the array denoted

by variable 𝑥 , when viewed as an index function restricted to the pre-image of Rcd, has bijective
image Img; 𝑘 enables the treatment of (jagged) segmented arrays, i.e., when Img depends on 𝑘 then
each segment (of index 𝑘) of the array has bijective image Img. The result is a boolean (true means
success) and a new symbol table, that possibly extends Δ.𝐵𝑖 𝑗 with a newly verified binding.
Rule BijV1 requires that 𝑥 already has a binding, denoted (Rcd2, (Sgm2, Img2)), where Sgm2

denotes a segmented shape (𝑒𝑚, 𝑘, 𝑒𝑘 ), as introduced in Fig. 5 and Section 2.3. The rule succeeds if
(1) the queried image Img1 is equivalent to the one of the binding Img2, and (2) it can be proven
that Img2 ⊆ Rcd1 ⊆ Rcd2.4 Since by construction Img2 ⊆ Rcd2, it follows that 𝑥 can have no points
in Rcd2 − Img2 therefore the restriction to co-domain Rcd1 ⊆ Rcd2 also has bijective image Img1.

Rule BijV2 covers the case when 𝑥 does not have a binding in Δ.𝐵𝑖 𝑗 . It creates an index function
that maps all points inside the queried Rcd to itself (x[i]) and the other points to a special∞ symbol.
Then it simplifies it (see Section 4) and tries to prove bijectivity of the resulted index function.

This is achieved by a judgment of form Δ ⊢ ((𝑘, Img), 𝑓 )
𝐵𝑖 𝑗
→ (true, (Sgm, Img)) that similarly

returns true for success, together with the (segmented) bijective image; Rcd is missing because all
the points outside it have been mapped to∞.

Rule BijF1 covers the case when the index function 𝑓 is segmented, but Img, denoted by interval
[𝑒𝑙𝑏, 𝑒𝑢𝑏], is not, i.e., the image does not depend on 𝑘 . Bijectivity is verified by checking that (1) all
guarded expressions that do not correspond to∞ yield values within Img, (2) 𝑓 is injective outside
∞ points, and (3) the cardinal of Img is equal with the number of indices that are not mapped to∞.
Rule BijF2 covers two other cases5: one that refers to when both 𝑓 and Img are segmented, in

which case bijectivity is verified for each segment of 𝑓 , and another one, in which 𝑓 has the linear
domain and the property is considered non segmented. Verification is similar to BijF1.
4Verification of [𝑒𝑙𝑏1 , 𝑒𝑢𝑏1 ] ⊆ [𝑒𝑙𝑏2 , 𝑒𝑢𝑏2 ] is achieved by trying to prove (𝑒𝑙𝑏1 > 𝑒𝑢𝑏1 ) ∨ (𝑒𝑙𝑏1 ≥ 𝑒𝑙𝑏2 ∧ 𝑒𝑢𝑏1 ≤ 𝑒𝑢𝑏2 ).
5A special case (not shown) refers to when 𝑓 is segmented, Img is equal to the whole (unsegmented) domain of 𝑓 , and each
segment [𝑒𝑘 , 𝑒𝑘+1 ) contains values that are a permutation of [𝑒𝑘 , 𝑒𝑘+1 ) . The result is the segmented bijection [𝑒𝑘 , 𝑒𝑘+1 ) .

, Vol. 1, No. 1, Article . Publication date: July 2025.



10 Nikolaj Hey Hinnerskov, Robert Schenck, and Cosmin E. Oancea

Verifying bijectivity of a variable 𝑥 in restricted co-domain. Γ;Δ ⊢ (𝑥, Rcd, (𝑘, Img))
𝐵𝑖 𝑗
→ (true,Δ′)

Δ.𝐵𝑖 𝑗 (𝑥 ) = (Rcd2, (Sgm2, Img2 ) )
Sgm2 = (𝑒𝑚, 𝑘, 𝑒𝑘 )

Img2 unifies with Img1 {𝑘 ′ ↦→ 𝑘 }

Δ ⊢ 0 ≤ 𝑘 ≤ 𝑒𝑚
?⇒ Img2 ⊆ Rcd1 ⊆ Rcd2

Γ;Δ ⊢ (𝑥, Rcd1, (𝑘 ′, Img1 ) )
𝐵𝑖 𝑗
→ (true,Δ)

(BijV1)

𝑒𝑛 = length 𝑥 fresh 𝑖
𝑓 = for 𝑖 < 𝑒𝑛 . (𝑥 [𝑖 ] ∈ Rcd⇒ 𝑥 [𝑖 ] )∧(𝑥 [𝑖 ] ∉ Rcd⇒∞)
Γ;Δ ⊢ 𝑓 { 𝑓 ′ Δ ⊢ ( (𝑘, Img), 𝑓 ′ )

𝐵𝑖 𝑗
→ (true, (Sgm′, Img′ ) )

Δ′ = Δ with 𝐵𝑖 𝑗 = Δ.𝐵𝑖 𝑗 ∪ {𝑥 ↦→ (Rcd, (Sgm′, Img′ ) )

Γ;Δ ⊢ (𝑥, Rcd, (𝑘, Img) )
𝐵𝑖 𝑗
→ (true,Δ′ )

(BijV2)

Verifying bijectivity in image of an index function 𝑓 . Δ ⊢ ((𝑘, Img), 𝑓 )
𝐵𝑖 𝑗
→ (true, (Sgm, Img))

𝐷 =
𝑒𝑚⋃
𝑘=0

.for 𝑖 ≥ 𝑒𝑘 𝑘 ′ ∉ FV(𝑒𝑙𝑏 ) ∪ FV(𝑒𝑢𝑏 ) ∀ℎ ∈ 1, . . . , 𝑣 : Δ+for 𝐷 ⊢ 𝑐ℎ
?⇒ 𝑒𝑙𝑏 ≤ 𝑒ℎ ≤ 𝑒𝑢𝑏

Δ ⊢ 𝑓
𝐼𝑛𝑗
→ true 𝑒𝑘+1 = 𝑒𝑘 {𝑘 ↦→ 𝑘 + 1} Δ ⊢ true ?⇒ 𝑒𝑢𝑏 + 1 − 𝑒𝑙𝑏 =

∑𝑒𝑚

𝑘=0 (
∑𝑒𝑘+1−1

𝑖=𝑒𝑘
(𝑐1 ∨ . . . ∨ 𝑐𝑣 ) )

Δ ⊢ ( (𝑘 ′, [𝑒𝑙𝑏 , 𝑒𝑢𝑏 ] ), 𝑓 = for 𝐷 .
𝑣∧

ℎ=1
(𝑐ℎ ⇒ 𝑒ℎ ) [

∧(𝑐∞ ⇒∞)]) 𝐵𝑖 𝑗→ (true, ( (0, 𝑘 ′, 0), [𝑒𝑙𝑏 , 𝑒𝑢𝑏 ] ) ) (BijF1)

𝑖, Sgm, 𝑒𝑘+1, Img =

𝑖, (𝑒
𝑚, 𝑘, 𝑒𝑘 ), 𝑒𝑘+1, Img′ {𝑘 ′ ↦→ 𝑘 } if 𝐷 =

𝑒𝑚⋃
𝑘=0

.for 𝑖 ≥ 𝑒𝑘 , where 𝑒𝑘+1 = 𝑒𝑘 {𝑘 ↦→ 𝑘 + 1}

𝑖, (0, 𝑘 ′, 0), 𝑒𝑛, Img′ if 𝐷 = for 𝑖 < 𝑒𝑛

Δ ⊢ 𝑓
𝐼𝑛𝑗
→ true Img = [𝑒𝑙𝑏 , 𝑒𝑢𝑏 ] ∀ℎ ∈ {1, . . . , 𝑣} : Δ+for 𝐷 ⊢ 𝑐ℎ

?⇒ 𝑒𝑙𝑏 ≤ 𝑒ℎ ≤ 𝑒𝑢𝑏

Sgm = (𝑒𝑚, 𝑘, 𝑒𝑘 ) 𝑒𝑘+1 = 𝑒𝑘 {𝑘 ↦→ 𝑘 + 1} Δ+for 𝐷 ⊢ true ?⇒ 𝑒𝑢𝑏 + 1 − 𝑒𝑙𝑏 =
∑𝑒𝑘+1−1

𝑖=𝑒𝑘
(𝑐1 ∨ . . . ∨ 𝑐𝑣 )

Δ ⊢ ( (𝑘 ′, Img′ ), 𝑓 = for 𝐷 .
𝑣∧

ℎ=1
(𝑐ℎ ⇒ 𝑒ℎ ) [

∧(𝑐∞ ⇒∞)]) 𝐵𝑖 𝑗→ (true, (Sgm, Img) )
(BijF2)

Verifying injectivity of a variable 𝑥 in a (restricted) co-domain. Γ;Δ ⊢ (Rcd, 𝑥)
𝐼𝑛 𝑗
→ (𝑡𝑟𝑢𝑒,Δ′)

Rcd2 = Γ.𝐼𝑛 𝑗 (𝑥 )

Δ ⊢ true ?⇒ Rcd1 ⊆ Rcd2

Γ;Δ ⊢ (Rcd1, 𝑥 )
𝐼𝑛𝑗
→ (true,Δ)

(InjV1)

(𝑖, 𝑒𝑛,
𝑐, 𝑒𝑣 ) =

{
(𝑖, length 𝑥, 𝑐 𝑓 ∧ 𝑥 [𝑖 ] ∈ Rcd, 𝑥 [𝑖 ] ) if Δ.𝐹𝑃 (𝑦) = (𝑥, 𝜆𝑖.𝑐 𝑓 , _)
(fresh 𝑖, length y, 𝑦 [𝑖 ] ∈ Rcd, 𝑦 [𝑖 ] ) otherwise

𝑓 = for 𝑖 < 𝑒𝑛 . (𝑐 ⇒ 𝑒𝑣 )∧(¬𝑐 ⇒∞) Γ;Δ ⊢ 𝑓 { 𝑓 ′ Δ ⊢ 𝑓 ′
𝐼𝑛𝑗
→ true

Γ;Δ ⊢ (Rcd, 𝑦)
𝐼𝑛𝑗
→ (true,Δ with 𝐼𝑛 𝑗 = Δ.𝐼𝑛 𝑗 ∪ {𝑦 ↦→ Rcd})

(InjV2)

Verifying injectivity of an index function 𝑓 . Δ ⊢ 𝑓
𝐼𝑛 𝑗
→ true

𝑓 = for 𝑗 < 𝑒𝑛 . 𝑔𝑒 [∧(_⇒∞)]
fresh 𝑗 ′

Δ′ = Δ ∧ 0 ≤ 𝑗 < 𝑒𝑛 ∧ 0 ≤ 𝑗 ′ < 𝑒𝑛

( Δ′ ⊢≠, 𝑗,𝑗 ′ 𝑔𝑒
𝑀𝑜𝑛→ (true, _)

OR Δ′ ⊢𝑗,𝑗 ′ 𝑔𝑒
𝐼𝑛𝑗=
→ true )

Δ ⊢ 𝑓
𝐼𝑛𝑗
→ true

(InjF1)

𝑓 𝑟𝑒𝑠ℎ 𝑘 ′ 𝑗 ′ 𝑒𝑘+1 = 𝑒𝑘 {𝑘 ↦→ 𝑘 + 1} 𝑒′
𝑘
= 𝑒𝑘 {𝑘 ↦→ 𝑘 ′ }

Δ′ = Δ ∧ (0 ≤ 𝑘 ≤ 𝑒𝑚 ) ∧ (𝑒𝑘 ≤ 𝑗, 𝑗 ′ < 𝑒𝑘+1 )
( Δ′ ⊢≠, 𝑗,𝑗 ′ 𝑔𝑒

𝑀𝑜𝑛→ (true, _) OR Δ′ ⊢𝑗,𝑗 ′ 𝑔𝑒
𝐼𝑛𝑗=
→ true )

𝑒′
𝑘+1 = 𝑒𝑘 {𝑘 ↦→ 𝑘 ′ + 1} 𝑔𝑒′ = 𝑔𝑒 { 𝑗 ↦→ 𝑗 ′, 𝑘 ↦→ 𝑘 ′ }

Δ′′ = Δ ∧ (0 ≤ 𝑘 < 𝑘 ′ ≤ 𝑒𝑚 ) ∧ (𝑒𝑘 ≤ 𝑗 < 𝑒𝑘+1 ) ∧ (𝑒′𝑘 ≤ 𝑗 ′ < 𝑒′
𝑘+1 )

Δ′′ ⊢≠ (𝑔𝑒,𝑔𝑒′ )
𝐶𝑚𝑝
→ true

Δ ⊢
𝑒𝑚⋃
𝑘=0

.for 𝑗 ≥ 𝑒𝑘 . 𝑔𝑒 [∧(_⇒∞)] 𝐼𝑛𝑗
→ true

(InjF2)

Fig. 6. Verifying injectivity and bijectivity of variables and index functions denoting arrays.

Rules InjV1 and InjV2 verify injectivity in a restricted co-domain Rcd of a variable 𝑥 and are
similar in the form of judgments and treatment with rules BijV1 and BijV2. What differs is that
InjV2 also checks whether the target array 𝑦 is a filtering partitioning of some array 𝑥 , in which
case it reasons in terms of 𝑥 while taking into consideration the filtering predicate.
The rules InjF1 and InjF2, of form Δ ⊢ 𝑓

𝐼𝑛 𝑗
→ bool, verify the injectivity of the non-∞ elements

of index function 𝑓 . Rule InjF1 treats index functions having linear domains and uses the helper
inference rules

𝐼𝑛 𝑗=
→ and

𝑀𝑜𝑛→ defined in Fig. 7. Injectivity is verified in either one of two ways:

, Vol. 1, No. 1, Article . Publication date: July 2025.



Verifying Properties of Index Arrays in a Purely-Functional Data-Parallel Language 11

Guarded-Exps Helpers. Δ ⊢⊙,𝑖, 𝑗 𝑔𝑒
𝑀𝑜𝑛→ (true, 𝜎) Δ ⊢𝑖, 𝑗 𝑔𝑒

𝐼𝑛 𝑗=
→ true Δ ⊢⊙ (𝑔𝑒1, 𝑔𝑒2)

𝐶𝑚𝑝
→ true

∀ℎ ∈ 1 . . . 𝑣 it holds: ( 𝑐′
ℎ
= 𝑐ℎ {𝑖 ↦→ 𝑗 } 𝑒′

ℎ
= 𝑒ℎ {𝑖 ↦→ 𝑗 } Δ ∧ 𝑖 < 𝑗 ⊢ 𝑐ℎ ∧ 𝑐′ℎ

?⇒ 𝑒ℎ ⊙ 𝑒′
ℎ

)

There exists a sorting permutation 𝜎 of {1, . . . , 𝑣} such that for all ℎ ∈ {1, . . . , 𝑣} with 𝜎 (ℎ) < 𝑣 :

Δ ⊢ ( 𝑗 < 𝑖 ∨ 𝑖 < 𝑗 ) ∧ 𝑐′
𝜎 (ℎ) ∧ 𝑐𝜎 (ℎ)+1

?⇒ 𝑒′
𝜎 (ℎ) < 𝑒𝜎 (ℎ)+1

Δ ⊢⊙,𝑖,𝑗
𝑣∧

ℎ=1
(𝑐ℎ ⇒ 𝑒ℎ )

𝑀𝑜𝑛→ (true, 𝜎 )
(MonGe)

𝜎 = {𝑖 ↦→ 𝑗 } 𝑉 = {1, . . . , 𝑣} ∀ℎ, 𝑙 ∈ 𝑉 × 𝑉 :

Δ ⊢ (𝑒ℎ = 𝜎 (𝑒𝑙 ) ) ∧ 𝑐ℎ ∧ 𝜎 (𝑐𝑙 )
?⇒ 𝑖 = 𝑗

Δ ⊢𝑖,𝑗
𝑣∧

ℎ=1
(𝑐ℎ ⇒ 𝑒ℎ )

𝐼𝑛𝑗=
→ true

(InjGe)

∀ℎ, 𝑙 ∈ {1, . . . , 𝑣} × {1, . . . , 𝑤} : Δ ⊢ 𝑐1
ℎ
∧ 𝑐2

𝑙

?⇒ 𝑒1
ℎ
⊙ 𝑒2

𝑙

Δ ⊢⊙ (
𝑣∧

ℎ=1
(𝑐1

ℎ
⇒ 𝑒1

ℎ
),

𝑤∧
𝑙=1
(𝑐2

𝑙
⇒ 𝑒2

𝑙
) )

𝐶𝑚𝑝
→ true

(CmpGe)

Filtering-partitioning property of a variable. Γ;Δ ⊢ 𝑥 𝐹𝑃→ (true,Δ′)

Δ.𝐹𝑃 (𝑦) = (𝑥, fp_prop)

Γ;Δ ⊢ 𝑦 𝐹𝑃→ (true,Δ)
(FPV1)

Γ (𝑦) = for 𝑖 < 𝑒𝑦 . 𝑡𝑟𝑢𝑒 ⇒ 𝑥 [𝑖𝑠−1 [𝑖 ] ] Img = [0, 𝑒𝑦 )
Γ;Δ ⊢ ( 𝑖𝑠, Img ) 𝐼𝐹𝑃→ (true,Δ′ ) Δ′ .𝐼 𝐹𝑃 (𝑖𝑠 ) = (_, prop)

Γ;Δ ⊢ 𝑦 𝐹𝑃→ (true, Δ′ with 𝐹𝑃 = Δ′ .𝐹𝑃 ∨ {𝑦 ↦→ (𝑥, prop) } )
(FPV2)

Fig. 7. Guarded Expressions Helpers & Translating Filter-Partitioning Property to Inverse Filtering Partitioning

The first approach uses
𝐼𝑛 𝑗=
→ to prove that 𝑥 [𝑖1] = 𝑥 [𝑖2] implies 𝑖1 = 𝑖2 for the values of the guarded

expressions other than the one leading to ∞, i.e., _ ⇒ ∞. This is achieved by the query-solver
technique presented in Section 5.4. The second approach uses

𝑀𝑜𝑛→ to prove a sufficient condition
based on piecewise monotonicity, namely: If for any guarded expression 𝑐ℎ ⇒ 𝑒ℎ the 𝑒ℎ values are
distinct—which is denoted by ≠ in ⊢≠, 𝑗, 𝑗 ′ and typically comes down to strict monotonicity—and
there exists a sorting permutation 𝜎 that reorganizes the guarded expressions such that their values
always increase across them then the values of those guarded expressions are injective.

Rule InjF2 is concerned with index functions that have segmented domains. It applies a similar
reasoning to InjF1 within a segment, and in addition, it uses the Δ ⊢≠ (𝑔𝑒, 𝑔𝑒′) rule to prove that
values belonging to different segments are different; 𝑒1 ≠ 𝑒2 is solved by checking 𝑒1 < 𝑒2 or 𝑒1 > 𝑒2.

Rules FPV1 and FPV2 in Fig. 7 sketch the treatment of filtering-partitioning properties. Since
such properties can only result in an index function of form for 𝑖 < 𝑒𝑦 . 𝑡𝑟𝑢𝑒 ⇒ 𝑥 [𝑖𝑠−1 [𝑖]], rule
FPV2 pattern matches said form and tries to infer the inverse filter-partitioning property (𝐼𝐹𝑃 )
on 𝑖𝑠 in bijective image [0, 𝑒𝑦). 𝐼𝐹𝑃 ’s semantics was discussed in Section 2.3. Its implementation
(not shown) is similar to bijectivity rule BijV2, except that: (1) index function 𝑓 is filtering out the
points outside image [0, 𝑒𝑦); (2) the calls to rule InjGe (𝐼𝑛 𝑗 =) are eliminated from InjF1 and InjF2;
(3) the calls to rules MonGe (𝑀𝑜𝑛) and CmpGe (𝐶𝑚𝑝) are instantiated with < instead of ≠, to check
strictly increasing monotonicity. The predicates are obtained from the guards of the simplified 𝑓 :
the filtering one by negating the guard of the∞ value, and the partitioning ones from the guards
producing legal indices, ordered by the 𝜎 permutation computed by rule MonGe.

3.3 Inferring New Properties at a High Level
Figure 8 demonstrates several illustrative rules for inferring properties at a high level. Judgments
take the form Γ;Δ ⊢ (𝑦, 𝑒0) Δ𝑈→ Δ′, in which the argument indicates a source-language binding
let 𝑦 = 𝑒0 and the result is a potentially extended symbol table.
Rule ΔUeBij states that if 𝑦 is a partitioning of 𝑥 and 𝑥 is bijective in a restricted co-domain,

then the bijectivity property is transferred to 𝑦. Other (not shown) properties are similarly derived,

, Vol. 1, No. 1, Article . Publication date: July 2025.



12 Nikolaj Hey Hinnerskov, Robert Schenck, and Cosmin E. Oancea

A Few Samples of Inferring Properties at a High Level. Γ;Δ ⊢ (𝑦, 𝑒0) Δ𝑈→ Δ′

Δ.𝐹𝑃 (𝑦) = (𝑥, 𝜆𝑖.𝑒 𝑓 , . . .) 𝑒 𝑓 = true Δ.𝐵𝑖 𝑗 (𝑥 ) = RcdSgIm

Γ;Δ ⊢ (𝑦, 𝑒 ) Δ𝑈→ Δ with 𝐵𝑖 𝑗 = Δ.𝐵𝑖 𝑗 ∪ {𝑦 ↦→ RcdSgIm}
(ΔUeBij)

𝑦𝑣 = res(𝑒1 ) 𝑧𝑣 = res(𝑒2 )
Γ;Δ ⊢ (𝑥1, 𝑥𝑐 , 𝑦1, 𝑧1 )

𝐼 𝑓 𝐹𝑃
→ Δ1 . . .

Γ;Δ𝑣−1 ⊢ (𝑥𝑣 , 𝑥𝑐 , 𝑦𝑣 , 𝑧𝑣 )
𝐼 𝑓 𝐹𝑃
→ Δ𝑣

Γ;Δ𝑣 ⊢ (𝑥𝑣 , 𝑥𝑐 , 𝑦𝑣 , 𝑧𝑣 )
𝐼 𝑓 𝐵𝑖 𝑗
→ Δ′ (. . .)

Γ;Δ ⊢ (𝑥𝑣 , if 𝑥𝑐 then 𝑒1 else 𝑒2 ) Δ𝑈→ Δ′
(ΔUif)FOR ANY ℎ = 1 . . . 𝑣 SUCH THAT:

(𝑅1, SgIm1 ) = Δ.𝐵𝑖 𝑗 (𝑥1
ℎ
) {𝑥1

𝑙
↦→ 𝑦𝑙 }

𝑙=1...𝑣

(𝑅2, SgIm2 ) = Δ.𝐵𝑖 𝑗 (𝑥2
ℎ
) {𝑥2

𝑙
↦→ 𝑦𝑙 }

𝑙=1...𝑣

SgIm1 unifies
with SgIm2 𝑅 =

𝑅
1 if Δ ⊢ true ?⇒ 𝑅1 ⊆ 𝑅2

𝑅2 if Δ ⊢ true ?⇒ 𝑅2 ⊆ 𝑅1

UPDATE 𝑀 ← 𝑀 ∪ {𝑦ℎ ↦→ (𝑅, 𝑆𝑔𝐼𝑚1 ) }

Γ;Δ ⊢ (𝑦𝑣 , _, 𝑥1, 𝑥2 )
𝐼 𝑓 𝐵𝑖 𝑗
→ Δ with 𝐵𝑖 𝑗 = Δ.𝐵𝑖𝑔 ∪𝑀

(IfBij)

Δ.𝐹𝑃 (𝑥1 ) = (𝑧1, 𝑝1
0, 𝑝

1
ℎ

ℎ=1..𝑣1 )

Δ.𝐹𝑃 (𝑥2 ) = (𝑧2, 𝑝2
0, 𝑝

2
ℎ

ℎ=1..𝑣2 ) 𝑧1 = 𝑧2 𝑣1 = 𝑣2

for all ℎ = 0 . . . 𝑣1 : Γ;Δ ⊢ (𝑥𝑐 , 𝑝1
ℎ
, 𝑝2

ℎ
)
𝑝𝑟𝑒𝑑𝑈
→ 𝑝ℎ

Δ′ = Δ with 𝐹𝑃 = Δ.𝐹𝑃 ∪ {𝑦 ↦→ (𝑧1, 𝑝ℎℎ=0..𝑣1 ) }

Γ;Δ ⊢ (𝑦, 𝑥𝑐 , 𝑥1, 𝑥2 )
𝐼 𝑓 𝐹𝑃
→ Δ′

(IfFP)

𝑝1 = 𝜆𝑖. 𝑒1 𝑝2 = 𝜆𝑖. 𝑒2 𝑒1,2 ≠ false
Γ;Δ ⊢ (𝑥𝑐 ∧ 𝑒1 ) ∨ (¬𝑥𝑐 ∧ 𝑒2 {𝑖′ ↦→ 𝑖 }) { 𝑒

Γ;Δ ⊢ (𝑥𝑐 , 𝑝1, 𝑝2 )
𝑝𝑟𝑒𝑑𝑈
→ 𝜆𝑖. 𝑒

(PredUS)
𝑝1 = 𝜆𝑖. false OR 𝑝2 = 𝜆𝑖. false

Γ;Δ ⊢ (𝑥𝑐 , 𝑝1, 𝑝2 )
𝑝𝑟𝑒𝑑𝑈
→ 𝜆𝑖. false

(PredUF)

Fig. 8. Inferring and Verifying Properties at a High Level.

e.g., filtering preserves monotonicity and filtering-partitioning preserves injectivity, and can be
used to refine ranges (by min/maxing the existent upper/lower bounds of 𝑦 with those of 𝑥 ).
Rule ΔUif aims to unify properties across if expressions, which is demonstrated for bijectivity

(IfBij) and filtering-partitioning properties (IfFP). Rule IfBij denotes by 𝑦 the variable bound to the
if expression and by 𝑥1 and 𝑥2 the variable results of the then and else expressions, respectively, all
of them necessarily having the same (tuple) cardinality 𝑣 . If for any ℎ ∈ 1 . . . 𝑣 it happens that both
𝑥1
ℎ
and 𝑥2

ℎ
are bijective, with equivalent images and restricted co-domains that are in an inclusion

relation, then the bijective property is transmitted to the corresponding if result by choosing the
smaller restricted co-domain. The rule uses an improvement that substitutes the results of the
then/else branches for the ones of the if result in the bijective property before unifying them. This
enables the human in the loop, i.e., even if the images are not equal, the user can “force” unification
by wrapping the then/else expressions into functions whose post-conditions use dependent typing
across results—e.g., if both function have post-condition 𝜆𝑛 𝑋 . 𝐵𝑖 𝑗 𝑋 (0, 8 ∗ 𝑛) (_, (𝑛, 2 ∗ 𝑛)) then
bijectivity will unify even if the 𝑛 result might differ across branches.

Rule IfFP uses a notation similar to IfBij, except that, for simplicity, it does not use the dependent-
typing refinement, i.e.,𝑦, 𝑥1, 𝑥2 denote single variables. In addition, it denotes with 𝑥𝑐 the if condition.
The rules states that if both 𝑥1 and 𝑥2 are filtering partitioning of the same array (variable 𝑧) with a
matching number of partitions 𝑣 , then they can be accurately unified across the if expression. The
resulting predicates are computed by PredUS as 𝑝 𝑖 = (𝑥𝑐 ∧𝑝1 (𝑖)) ∨ (¬𝑥𝑐 ∧𝑝2 (𝑖)), where 𝑝1 and 𝑝2
corresponds to the predicates of 𝑥1 and 𝑥2, unless one of them denotes unknown (𝜆𝑖.false), in which
case they unify as unknown by rule PredUF. If the number of partitions do not match, then they
unify as a fully-unknown partitioning, denoted by an empty sequence of predicates (not shown).

4 INFERRING INDEX FUNCTIONS
Our source programs are compositions of array combinators, encouraging a point-free programming
style. However, pointful reasoning naturally emerges as a proof discipline for proving properties.
For instance, to prove 𝐼𝑛 𝑗 𝑥𝑠 (−∞,∞) it is sufficient to verify the query

Δ ⊢ (0 ≤ 𝑖 < length 𝑥𝑠 ∧ 0 ≤ 𝑗 < length 𝑥𝑠 ∧ 𝑥𝑠 [𝑖] = 𝑥𝑠 [ 𝑗]) ?⇒ 𝑖 = 𝑗 .

, Vol. 1, No. 1, Article . Publication date: July 2025.



Verifying Properties of Index Arrays in a Purely-Functional Data-Parallel Language 13

Conversion from source to index functions Γ;Δ ⊢ 𝑒∗ 𝑆𝑟𝑐→ (Γ′,Δ′, 𝑓 )

𝑛 ∈ Z

Γ ⊢ 𝑛 𝑆𝑟𝑐→ (Γ,Δ, for • . true⇒ 𝑛)
(Const)

𝑥 ∉ Γ fresh 𝑖
𝑓 = for 𝑖 < length 𝑥 . true⇒ 𝑥 [𝑖 ]

Γ;Δ ⊢ 𝑥 𝑆𝑟𝑐→ (Γ{𝑥 ↦→ 𝑓 },Δ, 𝑓 )
(Var1)

Γ (𝑥 ) = 𝑓

Γ;Δ ⊢ 𝑥 𝑆𝑟𝑐→ (Γ,Δ, 𝑓 )
(Var2)

Γ;Δ ⊢ 𝑒0 { (Γ′,Δ′, 𝑓1 )
Γ′ {𝑥 ↦→ 𝑓1 };Δ′ ⊢ 𝑒∗ { (Γ′′,Δ′′, 𝑓2 )

Γ;Δ ⊢ let 𝑥 = 𝑒0 in 𝑒∗
𝑆𝑟𝑐→ (Γ′′,Δ′′, 𝑓2 )

(Let)

Γ (𝑥2 ) = for • .
𝑣∧

ℎ=1
(𝑐ℎ ⇒ 𝑒ℎ )

∀ℎ = 1, . . . , 𝑣 . Δ ⊢ 𝑐ℎ
?⇒ 0 ≤ 𝑒ℎ < length 𝑥1

Γ;Δ ⊢ 𝑥1 [𝑥2 ]
𝑆𝑟𝑐→ (Γ,Δ, for • . 𝑥1 [𝑥2 ] )

(Idx)

Γ (𝑥2 ) = for 𝑖 < 𝑒𝑛 . 𝑔2
Γ;Δ+for 𝑖<𝑒𝑛 ⊢ 𝑒∗ {𝑥1 ↦→ 𝑥2 [𝑖 ] } { (Γ′,Δ′, for • . 𝑔1 )

Γ;Δ ⊢ map (𝜆𝑥1 . 𝑒∗ ) 𝑥2
𝑆𝑟𝑐→ (Γ′,Δ, for 𝑖 < 𝑒𝑛 . 𝑔1 )

(Map)
Γ (𝑥 ) = for • . true⇒ 𝑒 fresh 𝑖

Γ;Δ ⊢ iota 𝑥 𝑆𝑟𝑐→ (Γ,Δ, for 𝑖 < 𝑒 . true⇒ 𝑖 )
(Iota)

Γ (𝑥 ) = for • .
𝑣∧

ℎ=1
(𝑐ℎ ⇒ 𝑒ℎ )

Γ;Δ ⊢ 𝑐1 ∧𝑒1 ∨ . . .∨𝑐𝑣 ∧𝑒𝑣 { 𝑐𝑇 Γ;Δ ⊢ ¬𝑐𝑇 { 𝑐𝐹
Γ;Δ, 𝑐𝑇 ⊢ 𝑒∗2 { (Γ′,Δ′, for • . 𝑔2 ) Γ′ ;Δ′, 𝑐𝐹 ⊢ 𝑒∗3 { (Γ′′,Δ′′, for • . 𝑔3 )

fresh 𝑥𝑇 , 𝑥𝐹 Γ′′′ = Γ′′ {𝑥𝑇 ↦→ for • . 𝑔2, 𝑥𝐹 ↦→ for • . 𝑔3 }

Γ;Δ ⊢ if 𝑥 then 𝑒∗2 else 𝑒
∗
3
𝑆𝑟𝑐→ (Γ′′′,Δ′′, for • . (𝑥 ⇒ 𝑥𝑇 )

∧(¬𝑥 ⇒ 𝑥𝐹 ) )
(If)

𝑥1 has type 𝜏 → 𝑏𝑜𝑜𝑙

Γ;Δ ⊢ 𝑥1 𝑥2
𝑆𝑟𝑐→ (Γ,Δ, for • . 1⇒ 𝑥1 [𝑥2 ] )

(Unint.)

Fig. 9. Converting the source language to index functions.

G ::= □ | 𝑔∧G | G∧
𝑔

K ::= □ | 𝑒 + K | 𝑒 · K | 𝑥 [K] | ∑𝑒
𝑥=K (𝑠) |

∑K
𝑥=𝑒 (𝑠) |

∑𝑒
𝑥=𝑒 (K)

| ¬K | K ∧ 𝑐 | 𝑐 ∧K | K ∨ 𝑐 | 𝑐 ∨K | K ⊙ 𝑒 | 𝑒 ⊙ K
Fig. 10. Reduction context grammar for guarded expressions (G) and symbols (K).

To bridge the gap between program and query, we do away with the abstraction provided by array
combinators by transforming source programs to index functions, enabling precise reasoning about
array elements. Figure 9 provides an initial set of rules for inferring index functions (excluding
scan and scatter). For simplicity, all variables are treated as flat arrays (scalars are single-element
arrays), the rules target a subset of the language without tuples (SoA), and we sometimes write
• for 𝑖 < 1. Function declarations are translated similarly to let-bindings, with these additions:
(1) index functions are created for the formal arguments and bound in Γ; (2) preconditions on
arguments are added to Δ; and (3) the postcondition is verified on the resulting index functions.
We demonstrate the rules on our running example partition2 from Fig. 2. Recall that the

example takes a predicate 𝑝 as argument, which we treat as an uninterpreted function by inserting
an indexing symbol. The first source expression let cs = map (\x -> p x) xs is transformed by:

𝑝 has type f64→ bool

Γ;Δ+for 𝑖<𝑛 ⊢ 𝑝 𝑥𝑠 [𝑖] 𝑆𝑟𝑐→ (Γ, Δ+for 𝑖<𝑛, for 𝑗 < 1 . true⇒ 𝑝 [𝑥𝑠 [𝑖]])
(Unint)

Γ(𝑥𝑠) = for 𝑖 < 𝑛 . true⇒ 𝑥𝑠 [𝑖]

Γ;Δ ⊢ map (𝜆𝑥 . 𝑝 𝑥) 𝑥𝑠 𝑆𝑟𝑐→ (Γ, Δ, for 𝑖 < 𝑛 . true⇒ 𝑝 [𝑥𝑠 [𝑖]])
(Map)

To track positional dependencies backwards to the formal arguments of a function declaration,
we substitute index functions into other index functions by reduction over indexing symbols and
variables. Reduction contexts (Fig. 10) define where a reduction is to occur in an index function.
G
〈
𝑐 ⇒ 𝑒

〉
denotes the guarded expression obtained by replacing □with 𝑐 ⇒ 𝑒 in the context G. For

instance, if G = (𝑐1 ⇒ 𝑒1)
∧
□
∧(𝑐3 ⇒ 𝑒3), then G

〈
𝑐2 ⇒ 𝑒2

〉
is equivalent to (𝑐1 ⇒ 𝑒1)

∧(𝑐2 ⇒
, Vol. 1, No. 1, Article . Publication date: July 2025.



14 Nikolaj Hey Hinnerskov, Robert Schenck, and Cosmin E. Oancea

Rewrite rules Γ;Δ ⊢ 𝑓 → 𝑓 ′ Γ;Δ ⊢ 𝑒 → 𝑒′ Γ;Δ ⊢ 𝑔→ 𝑔′

Γ (𝑥 ) = for 𝑖 < 𝑒𝑛 .
𝑣∧

ℎ=1
(𝑐ℎ ⇒ 𝑒ℎ ) FV(𝑒0 ) ∩ BV(K⟨𝑥 [𝑒0 ] ⟩) = ∅ 𝜎 = {𝑖 ↦→ 𝑒0 }

Γ;Δ ⊢ for 𝐷 . G
〈
𝑐 ⇒ K⟨𝑥 [𝑒0 ] ⟩

〉
→ for 𝐷 . G

〈 𝑣∧
ℎ=1
(𝑐 ∧𝜎 (𝑐ℎ ) ⇒ K⟨𝜎 (𝑒ℎ ) ⟩)

〉 (I.Sub1)
Γ (𝑥 ) = for • . 𝑔

Γ ⊢ K⟨𝑥 ⟩ → K⟨𝑥 [0] ⟩
(E.Lift)

Γ (𝑥 ) = for 𝑖 < 𝑒𝑛 . true⇒ 𝑒1

Γ;Δ ⊢ K⟨𝑥 [𝑒0 ] ⟩ → K⟨𝑒1 {𝑖 ↦→ 𝑒0 }⟩
(E.Sub1) Γ;Δ ⊢ 𝑒𝑛 { 𝑒𝑛

′

Γ;Δ ⊢ for 𝑖 < 𝑒𝑛 . 𝑔→ for 𝑖 < 𝑒𝑛
′
. 𝑔

(I.1)
Γ;Δ+𝐷 ⊢ 𝑔 { 𝑔′

Γ;Δ ⊢ 𝐷 . 𝑔→ 𝐷 . 𝑔′
(I.2)

Δ ⊢ true ?⇒ 𝑒1 ⊙ 𝑒2
Γ;Δ ⊢ K⟨𝑒1 ⊙ 𝑒2 ⟩ → K⟨1⟩

(E.Query⊙ )

Γ;Δ ⊢ 𝑐 { 𝑐′

Γ;Δ ⊢ G
〈
𝑐 ⇒ 𝑒

〉
→ G

〈
𝑐′ ⇒ 𝑒

〉 (G.1)
Γ;Δ ∧ 𝑐 ⊢ 𝑒 { 𝑒′

Γ;Δ ⊢ G
〈
𝑐 ⇒ 𝑒

〉
→ G

〈
𝑐 ⇒ 𝑒′

〉 (G.2)

𝑐1 ∧ . . .∧𝑐𝑣 = CNF(𝑐0 )

∃ℎ ∈ {1, . . . , 𝑣} . ∧
𝑙={1,...,𝑣}\{ℎ}

𝑐𝑙
?⇒ ¬𝑐ℎ

Γ ⊢ G
〈
𝑐0 ⇒ 𝑒

〉
→ G

〈
0⇒ 𝑒

〉 (G.Falsify)

Γ;Δ ∧ 𝑐0 ⊢ 𝑒1 { 𝑒0

Γ;Δ ⊢ G
〈
(𝑐0 ⇒ 𝑒0 )

∧(𝑐1 ⇒ 𝑒1 )
〉
→ G

〈
𝑐0 ∨𝑐1 ⇒ 𝑒0

〉 (G.Join-1)

Γ;Δ ⊢ 𝑐1 ⇒ 𝑒1
∧

. . .
∧

0⇒ 𝑒
∧

. . .
∧
𝑐𝑣 ⇒ 𝑒𝑣

→ 𝑐1 ⇒ 𝑒1
∧

. . .
∧
𝑐𝑣 ⇒ 𝑒𝑣

(G.Elim)

Fig. 11. Rewrite rules for index functions.

𝑒2)
∧(𝑐3 ⇒ 𝑒3). Similarly, K⟨𝑒⟩ denotes the symbol (or expression) obtained by replacing □ with 𝑒

in the context K . For example, if K = 𝑒1 + 𝑥1 [□], then K⟨𝑥2⟩ is K = 𝑒1 + 𝑥1 [𝑥2].
Reductions are used in the rewrite rules shown in Fig. 11. I.Sub1 substitutes one index function

into another by combining their guarded expressions, given that variables in the indexing expression,
𝑒0, are free. E.Lift treats scalars as one-element arrays, enabling substitution. E.Sub1 substitutes
an indexing symbol anywhere given that the index function being indexed into has only one
guarded expression. Via rules I.1, I.2, G.1, and G.2, this enables substitutions into domains and Sum
symbols, such as

∑𝑒2
𝑗=𝑒1
(𝑥1 [ 𝑗]) where 𝑗 is not free. Note how in G.2, the truth of the guard is used to

rewrite its expression. E.Query⊙ uses the solver to simplify symbols beyond the scope of syntactical
rewrites, while G.Falsify uses the solver to falsify guards by converting the guard to CNF and then
checking whether there exists a false conjunct under assumption of all other conjuncts. G.Join-1
merges two guarded expressions given that the value of the second guarded expression simplifies
to the value of the first guarded expression under assumption of the first guard. G.Elim eliminates
guarded expressions for which the guard is false. For brevity, we omit analogous rules E.Query∧
and E.Query∨ where ⊙ in E.Query⊙ is replaced by ∧ and ∨, respectively; G.Join-2 where the roles
of 𝑐0 and 𝑐1, and 𝑒0 and 𝑒1, are swapped; and rules for binary operations (similar to If).
Returning to partition2, we have, via Map, If, Const, E.Lift, and I.Sub1:
flagsT = map (\c -> if c then 1 else 0) cs | for 𝑖 < 𝑛 . 𝑝 [𝑥𝑠 [𝑖]] ⇒ 1

∧¬𝑝 [𝑥𝑠 [𝑖]] ⇒ 0
Note how the positional relation between 𝑥𝑠 and the values of 𝑓 𝑙𝑎𝑔𝑠𝑇 is tracked automatically by
substitution on 𝑐𝑠 . In related systems, these must be established by the user (see Section 7).

Scan: recurrences and sums. Figure 12 extends the rule set to convert scan into an index function
with a special recurrence symbol⟲ used for pattern matching in rewrites. Rule I.Sum introduce
sums by matching recurrences on linear polynomials where

sum(n1 · c1 + n2 · c2 + · · · + nv · cv, a, b) = 𝑛1 ·
∑𝑏

𝑗=𝑎 (𝑐1) + . . . + 𝑛𝑣 ·
∑𝑏

𝑗=𝑎 (𝑐𝑣).

G.Neg rewrites negations on symbols found outside guards into integer arithmetic. G.BoolToInt
flattens guarded expressions matching user conversion from bool to integer. Both rules facilitate
rewriting recurrences into sums over boolean symbols. Converting 𝑖𝑛𝑑𝑖𝑐𝑒𝑠𝑇 now yields:

indicesT = scan (\x y -> x + y) 0 flagsT | for 𝑖 < 𝑛 . 𝑡𝑟𝑢𝑒 ⇒ ∑𝑖
𝑗=0 (𝑝 [𝑥𝑠 [ 𝑗]])

, Vol. 1, No. 1, Article . Publication date: July 2025.



Verifying Properties of Index Arrays in a Purely-Functional Data-Parallel Language 15

Rules for scan and scatter Γ;Δ ⊢ 𝑒∗ 𝑆𝑟𝑐→ (Γ′,Δ′, 𝑓 ) Γ;Δ ⊢ 𝑓 → 𝑓 ′ Γ;Δ ⊢ 𝑔→ 𝑔′

Γ (𝑥3 ) = for 𝑖 < 𝑒𝑛 . 𝑔3
Γ;Δ+for 𝑖<𝑒𝑛 ⊢ 𝑒∗ {𝑥2 ↦→ 𝑥3 [𝑖 ] } { (Γ′,Δ′for • . 𝑔1 )

Γ;Δ ⊢ scan (𝜆𝑥1 𝑥2 . 𝑒∗ ) 𝑣 𝑥3
𝑆𝑟𝑐→ (Γ′,Δ, for 𝑖 < 𝑒𝑛 . 𝑔1 {𝑥1 ↦→⟲})

(Scan)

(𝑒 is linear and⟲ does not occur in 𝑒)
fresh 𝑗 𝑒′ := sum(𝑒 {𝑖 ↦→ 𝑗 }, 0, 𝑖 )

Γ;Δ ⊢ for 𝑖 < 𝑒𝑛 . 1⇒⟲ + 𝑒 → for 𝑖 < 𝑒𝑛 . 1⇒ 𝑒′
(I.Sum)

(⟲ does not occur in 𝑒)

Γ;Δ ⊢ for 𝑖 < 𝑒𝑛 . (𝑖 = 0⇒ 𝑒 )∧(𝑖 ≠ 0⇒⟲)
→ for 𝑖 < 𝑒𝑛 . 1⇒ 𝑒 {𝑖 ↦→ 0}

(I.Carry)

Γ;Δ ⊢ G
〈
𝑐1 ⇒ K⟨¬𝑐2 ⟩

〉
→ G

〈
𝑐1 ⇒ K⟨1 − 𝑐2 ⟩

〉 (G.Neg)

Γ;Δ ⊢ (𝑐0 ⇒ 𝑛0 )
∧(𝑐1 ⇒ 𝑛1 ) → (𝑡𝑟𝑢𝑒 ⇒ 𝑐0 · 𝑛0 + 𝑐1 · 𝑛1 )

(G.BoolToInt)

Γ;Δ ⊢ scatter 𝑥𝑠 𝑖𝑠 𝑣𝑠
𝑆𝑎𝑓 𝑒
→ true

𝑒𝑛 = length 𝑥𝑠 (Img,Δ′′ ) =
 (𝑋,Δ) if Δ.𝐵𝑖 𝑗 (𝑖𝑠 ) = (Rcd, 𝑋 ) and Δ ⊢ true ?⇒ 𝑋 ⊆ [0, 𝑒𝑛 ) ⊆ Rcd

( [0, 𝑒𝑛 ),Δ′ ) if Γ;Δ ⊢ (𝑖𝑠, [0, 𝑒𝑛 ), (_, [0, 𝑒𝑛 ) ) )
𝐵𝑖 𝑗
→ (true,Δ′ )

Γ;Δ ⊢ scatter 𝑥𝑠 𝑖𝑠 𝑣𝑠 𝑆𝑟𝑐→ (Γ,Δ′′, for 𝑖 < 𝑒𝑛 . (𝑖 ∈ Img⇒ 𝑣𝑠 [𝑖𝑠−1 [𝑖 ] ] )∧(𝑖 ∉ Img⇒ 𝑥𝑠 [𝑖 ] ) )
(Sc1)

Γ;Δ ⊢ scatter 𝑥𝑠 𝑖𝑠 𝑣𝑠
𝑆𝑎𝑓 𝑒
→ true 𝑒𝑛 = length 𝑥𝑠 𝑒𝑚 = length 𝑖𝑠

𝑓𝑖𝑠 = for 𝑖 < 𝑒𝑚 . (0 ≤ 𝑖𝑠 [𝑖 ] < 𝑒𝑛 ⇒ 𝑖𝑠 [𝑖 ] )∧(¬(0 ≤ 𝑖𝑠 [𝑖 ] < 𝑒𝑛 ) ⇒ ∞)
Γ;Δ ⊢ 𝑓𝑖𝑠 { (Γ′,Δ′, for 𝑖 < 𝑒𝑚 . (𝑐 ⇒ 𝑒 ) [∧(¬𝑐 ⇒∞)]) 𝑒0 = 𝑒 {𝑖 ↦→ 0} fresh 𝑘1, 𝑘2

Δ′ ∧ 0 ≤ 𝑘1 < 𝑘2 < 𝑒𝑚 ⊢ true ?⇒ 0 ≤ 𝑒 {𝑖 ↦→ 𝑘1 } ≤ 𝑒 {𝑖 ↦→ 𝑘2 } ≤ 𝑒𝑛 fresh 𝑗, 𝑘 𝑒𝑘 = 𝑒 {𝑖 ↦→ 𝑘 − 1} 𝑐𝑘 = 𝑐 {𝑖 ↦→ 𝑘 − 1}

Γ;Δ ⊢ scatter 𝑥𝑠 𝑖𝑠 𝑣𝑠 𝑆𝑟𝑐→ (Γ′,Δ′, for 𝑖 < 𝑒0 . (true⇒ 𝑥𝑠 [𝑖 ] ) ∪
𝑒𝑚⋃
𝑘=1

for 𝑗 ≥ 𝑒𝑘 ∝ 𝑒𝑛 . ( 𝑗 = 𝑒𝑘 ∧𝑐𝑘 ⇒ 𝑣𝑠 [𝑘 − 1] )∧( 𝑗 ≠ 𝑒𝑘 ∨¬𝑐𝑘 ⇒ 𝑥𝑠 [ 𝑗 ] )

(Sc2)

Scatter safety Γ;Δ ⊢ 𝑓
𝑆𝑎𝑓 𝑒
→ (true,Δ′)

Γ;Δ ⊢ ( [0, length 𝑥𝑠 ), 𝑖𝑠 )
𝐼𝑛𝑗
→ (true,Δ′ )

Γ;Δ ⊢ scatter 𝑥𝑠 𝑖𝑠 𝑣𝑠
𝑆𝑎𝑓 𝑒
→ true

(Ss1)
Γ (𝑣𝑠 ) = for 𝑖 < 𝑒𝑛 . true⇒ 𝑒 𝑖 ∉ FV(𝑒 )

Γ;Δ ⊢ scatter 𝑥𝑠 𝑖𝑠 𝑣𝑠
𝑆𝑎𝑓 𝑒
→ true

(Ss2)

Δ.𝑅𝑎𝑛𝑔𝑒 (𝑣𝑠 ) = (𝑒1, 𝑒2 ) Δ ⊢ true ?⇒ 𝑒1 = 𝑒2

Γ;Δ ⊢ scatter 𝑥𝑠 𝑖𝑠 𝑣𝑠
𝑆𝑎𝑓 𝑒
→ true

(Ss3)

Fig. 12. Additional rewrite rules as well as conversion of scan and scatter.

Scatter: safety checks and segmented domains. Figure 12 converts scatter to index functions
while verifying safety; if safety cannot be shown, no rule will be matched and the analysis terminates
in failure. The two conversion rules Sc1 and Sc2 first check safety using Ss1–3. Ss1 verifies that
the indices 𝑖𝑠 have no duplicates in the bounds of the destination array 𝑥𝑠 , and Ss2 and Ss3 both
verify that the values in 𝑣𝑠 do not depend on its indices (allowing for duplicate indices in 𝑖𝑠). Sc1
further verifies that the indices 𝑖𝑠 , that fall within the bounds of 𝑥𝑠 , are a permutation of the indices
of 𝑥𝑠 . The resulting index function couples 𝑖𝑠−1 to 𝑖𝑠 , which is used in query solving (e.g., FPV2).
Sc2 verifies that 𝑖𝑠 is monotonically increasing, producing an index function that has a domain
with 𝑒𝑚 + 1 segments (per Section 2.2). Out-of-bounds indices map to empty segments; this is
crucial, because the number of non-empty segments is generally statically unknown. The resulting
index function is verbose, but simplifies via the rewrite system. For example, if 𝑒0 rewrites to 0,
the leading for 𝑖 < 𝑒0 . (𝑡𝑟𝑢𝑒 ⇒ 𝑥𝑠 [𝑖]) simplifies away (its domain is empty)—this is the case when

, Vol. 1, No. 1, Article . Publication date: July 2025.



16 Nikolaj Hey Hinnerskov, Robert Schenck, and Cosmin E. Oancea

Substituting index functions Γ;Δ ⊢ 𝑓 → 𝑓 ′

Γ (𝑥 ) =
𝑒𝑚⋃
𝑘=0

for 𝑗 ≥ 𝑒𝑘 .
𝑣∧

ℎ=1
(𝑐ℎ ⇒ 𝑒ℎ ) ∀ℎ = 1, . . . , 𝑣 . Δ

+
𝑒𝑚⋃
𝑘=0

for 𝑖≥𝑒𝑘
⊢ 𝑐ℎ

?⇒ 𝑒𝑘 ≤ 𝑒0 < 𝑒𝑘 {𝑘 ↦→ 𝑘 + 1}

FV(𝑒0 ) ∩ BV(K⟨𝑥 [𝑒0 ] ⟩) = ∅ Γ;Δ ⊢ 𝑒𝑘 {𝑘 ↦→𝑚 + 1} {𝑠 𝑒𝑛 𝜎 = { 𝑗 ↦→ 𝑒0 }

Γ;Δ ⊢ for 𝑖 < 𝑒𝑛 . G
〈
𝑐 ⇒ K⟨𝑥 [𝑒0 ] ⟩

〉
→

𝑒𝑚⋃
𝑘=0

for 𝑖 ≥ 𝑒𝑘 . G
〈 𝑣∧
ℎ=1
(𝑐 ∧𝜎 (𝑐ℎ ) ⇒ K⟨𝜎 (𝑒ℎ ) ⟩)

〉 (Sub2)

Γ (𝑥 ) =
𝑒𝑚
′⋃

𝑘′=0
for 𝑗 ≥ 𝑒𝑘′ .

𝑣∧
ℎ=1
(𝑐ℎ ⇒ 𝑒ℎ ) ∀ℎ = 1, . . . , 𝑣 . Δ

+
𝑒𝑚⋃
𝑘=0

for 𝑖≥𝑒𝑘
⊢ 𝑐ℎ

?⇒ 𝑒𝑘 ≤ 𝑒0 < 𝑒𝑘 {𝑘 ↦→ 𝑘 + 1}

FV(𝑒0 ) ∩ BV(K⟨𝑥 [𝑒0 ] ⟩) = ∅
𝑒𝑚⋃
𝑘=0

for 𝑖 ≥ 𝑒𝑘 unifies with
𝑒𝑚
′⋃

𝑘=0
for 𝑖 ≥ 𝑒′

𝑘
𝜎 = {𝑘 ′ ↦→ 𝑘, 𝑗 ↦→ 𝑒0 }

Γ;Δ ⊢
𝑒𝑚⋃
𝑘=0

for 𝑖 ≥ 𝑒𝑘 . G
〈
𝑐 ⇒ K⟨𝑥 [𝑒0 ] ⟩

〉
→

𝑒𝑚⋃
𝑘=0

for 𝑖 ≥ 𝑒𝑘 . G
〈 𝑣∧
ℎ=1
(𝑐 ∧𝜎 (𝑐ℎ ) ⇒ K⟨𝜎 (𝑒ℎ ) ⟩)

〉 (Sub3)

Γ (𝑥 ) =
𝑒𝑚⋃
𝑘=0

for 𝑗 ≥ 𝑒𝑘 .
𝑣∧

ℎ=1
(𝑐ℎ ⇒ 𝑒ℎ )

{𝑘 ↦→ 𝑒′0 } = unify (𝑒𝑘 , 𝑒0 ) or {𝑘 ↦→ 𝑒′0 } = unify (𝑒𝑘 {𝑘 ↦→ 𝑘 + 1} − 1, 𝑒0 )
FV(𝑒0 ) ∩ BV(K⟨𝑥 [𝑒0 ] ⟩) = ∅ 𝜎 = {𝑘 ↦→ 𝑒′0, 𝑗 ↦→ 𝑒0 }

Γ;Δ ⊢ for 𝐷 . G
〈
𝑐 ⇒ K⟨𝑥 [𝑒0 ] ⟩

〉
→ for 𝐷 . G

〈 𝑣∧
ℎ=1
(𝑐 ∧𝜎 (𝑐ℎ ) ⇒ K⟨𝜎 (𝑒ℎ ) ⟩)

〉 (Sub4)

Fig. 13. Substitution rules for segmented domains.

scattering ones into a flag array using an exclusive scan of the shape array (Fig. 2). It also handles
scattering at an inclusive scan’s output, forming an initial linear segment. A subsequent segmented
scan with either flag array simplifies to the same index function. A further simplification omits 𝑐𝑘
from the guards if 𝑐 is implied by the segment being non-empty, checked via the queries

Δ+for 𝑖<𝑒
𝑚 ⊢ 𝑒{𝑖 ↦→ 𝑖 + 1} − 𝑒 > 0

?⇒ 𝑐 and Δ ∧ 𝑖 = 𝑒𝑚 − 1 ⊢ 𝑒𝑛 − 𝑒 > 0
?⇒ 𝑐.

Substitutions of segmented index functions into other index functions can be reduced to Sub1 by
first transforming the index function to have a linear domain using an 𝐼 𝐼 array (or by treating 𝑘 as
an uninterpreted function of the domain iterator 𝑖). However, we define additional substitutions in
Fig. 13 to automatically propagate structural information through index functions. Sub2 is similar
to Sub1, but replaces the linear domain of the target index function with the segmented domain of
the function being indexed into. A query checks that 𝑒0 is within bounds of segment 𝑘 , allowing the
segmented domain to be adopted without modification. Sub3 further requires that the domains of
two segmented index functions are identical for substitution to go through. Finally, Sub4 eliminates
the iterator variable, 𝑘 , of the segmented index function being indexed into, given unification of 𝑒𝑘
with 𝑒0 yields a substitution for 𝑘 . This is useful for scalar expressions that index into segmented
index functions, in which case the domain, naturally, cannot be propagated. If solving fails, 𝑘 can
always be replaced by indexing into an 𝐼 𝐼 array corresponding to the segmented index function.
Segmented versions of Map, Scan, I.1, and I.Sum follow similar ideas and are ommited for brevity.

Rewrite system and final remarks. When converting the source language to index functions, each
conversion step is followed by rewrites applied to a fixed point:

Γ;Δ ⊢ 𝑒∗ 𝑆𝑟𝑐→ (Γ′,Δ′, 𝑓 ), Γ;Δ ⊢ 𝑓 { (Γ′′,Δ′′, 𝑓 ′),

Rewrite rules are simply tried in the order that they appear here, except for I.Sum and I.Carry,
which are only applied after Let as they introduce indexing with bound variables and hence limit

, Vol. 1, No. 1, Article . Publication date: July 2025.



Verifying Properties of Index Arrays in a Purely-Functional Data-Parallel Language 17

𝑋 ::= 𝑥 Non-Boolean Array
| 𝐷𝑂𝑅 𝑥 Disjoint Bool Arrays

𝑠 ::= 𝑥 Variable
| 𝑋 [𝑃𝑜𝑙𝑦𝑖𝑛𝑑 ] Indexing
| ∑

𝑋 [𝑃𝑜𝑙𝑦𝑏 : 𝑃𝑜𝑙𝑦𝑒 ] Slice Sum
𝑇𝑒𝑟𝑚 ::= 𝑠𝑘 | 𝑠𝑘 ∗ 𝑇𝑒𝑟𝑚
𝑃𝑜𝑙𝑦 ::= 𝑘 | 𝑃𝑜𝑙𝑦 + 𝑘 ∗𝑇𝑒𝑟𝑚

Example of Legal Ranges
3 ≤ 𝑛 ≤ infty
𝑛 ≤ 3 · 𝑖 ≤ {5 · 𝑛,𝑛2 }

𝑖 + 𝑛 ≤ 𝑗 ≤ 𝑖2

{𝑖 + 1, 5} ≤ ∑
𝑋 [𝑖 : 𝑖 + 𝑗 ] ≤ 𝑗 − 1

Example of Illegal Ranges
𝑖 ≤ 𝑛 ≤ 𝑖 · 𝑖
𝑛 ≤ 2 · 𝑖 ≤ 2 · 𝑛 − 5

Algorithm 1 Solve≤0Δ
Require: a 𝑃𝑜𝑙𝑦 expression p in which mono-

tonic indices have been translated to sums.
Ensure: true if p ≤ 0 was verified, else false
1: p′ = PeelOnRngΔ(SimplifyΔ p)
2: if p′ is constant 𝑘 then return 𝑘 ≤ 0
3: s = FindSymΔ p′
4: (lbs, k, ubs) = getRangeΔ s
5: rewrite p′ as p𝑎 · s + p𝑏
6: for each (l, u) ∈ lbs × ubs do
7: (p1, p2) = (l · pa + k · pb , u · pa + k · pb)
8: if ( Solve≤0Δ (−p𝑎 ) ∧ Solve≤0Δ p2 ) ∨
9: ( Solve≤0Δ p𝑎 ∧ Solve≤0Δ p1 ) then
10: return true
11: return false

Algorithm 2 SimplifyΔ
Require: a 𝑃𝑜𝑙𝑦 expression
Ensure: a 𝑃𝑜𝑙𝑦 expression seman-

tically equivalent with the in-
put

1: while Fix Point Not Reached
do

2: Apply SubstEqivsΔ
3: Apply 0Sum
4: Apply to a fix point UnBef
5: Apply to a fix point B1-5
6: Apply 0Sum
7: Apply to a fix point

UnAft1-5
8: return fix-point expression

Fig. 14. Grammar for symbols (𝑠), polynomial (𝑃𝑜𝑙𝑦) and guarded expressions (𝑔), and index functions 𝑖𝑥 𝑓 𝑛.

substitutions. The source program is converted top-to-bottom; top-level functions must be declared
before using them. This means all top-level functions have index functions before they are applied.
Thus application of function declarations (1) verifies that the actual arguments’ index functions
satisfy the formal arguments’ pre-conditions; (2) substitutes formal arguments with actual ones via
the indexing reduction rules; and (3) adds the previously verified post-condition to Δ.

5 SOLVING QUERIES
The query solver has three main tasks: to solve equality and inequality queries and to simplify
internal expressions, e.g., enabling the side conditions related to unification. Section 5.1 discusses
the language of the query solver and the construction of symbol tables such as the ones recording
symbols’ ranges 𝑅𝑎𝑛𝑔𝑒𝑠 and equivalences 𝐸𝑞𝑢𝑖𝑣𝑠 . Section 5.2 presents our adaptation of the Fourier-
Motzkin algorithm for solving inequalities, and Section 5.3 presents the simplification engine that is
aimed to support array indexing and sum symbols. While equality queries are often satisfied through
simplification, Section 5.4 presents a more advanced method that exploits injective properties.

5.1 Query Solver Language Lowering and Symbol Tables
The left side of Fig. 14 shows the language of the query solver. Capital 𝑋 denotes either the name
of an integral array 𝑥 or a disjunction of a sequence of disjoint/orthogonal boolean arrays, denoted
DOR 𝑥 𝑣 , i.e., for any legal index 𝑖 , (DOR 𝑥 𝑣) [𝑖] = 𝑥1 [𝑖] ∨ . . . ∨ 𝑥𝑣 [𝑖] and there is at most one
ℎ ∈ 0 . . . 𝑣 holding a true value. A singleton sequence is always legal, and an empty sequence results
in false. Computationally, boolean values are treated as integers, 1 for true and 0 for false.
The solver uses a polynomial representation similar to the one of index functions, denoted

𝑃𝑜𝑙𝑦, except that its symbols are restricted to scalar variables 𝑥 , indexing and sums of array slices
(of unit stride) over 𝑋 . High-level queries are lowered to 𝑃𝑜𝑙𝑦 in the standard way, by binding
(bilaterally) untranslatable expressions to fresh variables, whose properties are documented, as
much as possible, in other symbol tables. For example, the guards 𝑐𝑣 of an index function give raise
to 𝑣 fresh symbols 𝑥 𝑣 , where each one of them is bound in the Δ.𝐷𝑂𝑅 symbol table to the whole
sequence 𝑥 𝑣 . While the exact meaning of the predicates is lost, the solver can still conduct reasoning
based on the property that at any index, exactly one of 𝑥 𝑣 is true, which subsumes disjointness.

Similarly, for the purpose of inequality solving, a monotonically-increasing array 𝑥 of length 𝑛 is
translated to the sum of a slice of a fresh array variable𝑎, whose elements are positive. Assuming that
𝑥 ’s elements are known to be within [𝑒𝑙𝑏, 𝑒𝑢𝑏], then a valid index 𝑥 [𝑖] is translated to 𝑒𝑙𝑏 +∑𝑎[0 : 𝑖],

, Vol. 1, No. 1, Article . Publication date: July 2025.



18 Nikolaj Hey Hinnerskov, Robert Schenck, and Cosmin E. Oancea

while encoding in 𝑅𝑎𝑛𝑔𝑒𝑠 that 𝑎 has positive elements (and
∑
𝑎[0 : 𝑛 − 1] ≤ 𝑒𝑢𝑏 − 𝑒𝑙𝑏 ). Strictly-

increasing monotonicity is similarly handled by means of a strictly positive array.
The 𝑅𝑎𝑛𝑔𝑒𝑠 and 𝐸𝑞𝑢𝑖𝑣 symbol tables are constructed to conform with a “triangular” shape that

essentially requires that an ordering of the bound symbols exists, such that the range or equivalent
rewrite of a symbol may only depend on its predecessors. Bindings 𝑠𝑦𝑚 ↦→ 𝑏𝑛𝑑 are added by
processing boolean expressions denoting (in)equalities, e.g., corresponding to code properties (e.g.,
branch conditions or loop counters) or query premises. From them, a set of candidate bindings
are identified and the invalid ones are rejected, whenever it is found that the leading name of 𝑠𝑦𝑚
appears in the transitive closure of variable names through 𝑅𝑎𝑛𝑔𝑒𝑠 and 𝐸𝑞𝑢𝑖𝑣 that starts from 𝑏𝑛𝑑 .
If there are several legal candidates for the same (in)equality, the winning symbol is selected by a
set of heuristics, e.g., the one appearing latest in program order. For example, assuming an empty
𝐸𝑞𝑢𝑖𝑣 , the binding 𝑖 ↦→ 𝐵 [𝑖] is illegal because 𝑖 ∈ {𝑖, 𝐵}, but 𝐵 [𝑖] ↦→ 𝑖 is legal because the leading
symbol 𝐵 ∉ {𝑖}. Examples of legal and illegal 𝑅𝑎𝑛𝑔𝑒𝑠 tables are also shown in Fig. 14.

5.2 Solving Inequalities
Inequalities are reduced to form 𝑝 ≤ 0 and solved by the adaptation of Fourier-Motzkin elimina-
tion [21, 66] presented in Algorithm 1, which proceeds by simplifying 𝑝 , which is necessary in the
presence of index and sum symbols, otherwise the canonical polynomial representation 𝑃𝑜𝑙𝑦 is
optimal. The next line implements the base case, i.e., when the simplified expression 𝑝′ is a value
𝑘 . If not, FindSymΔ determines the next symbol 𝑠 to eliminate, as the symbol of 𝑝′ whose range
transitively depends on the largest number of (other) distinct symbols. The range of 𝑠 , computed by
GetRangeΔ, takes the form (𝑙𝑏𝑠, 𝑘,𝑢𝑏𝑠), where 𝑘 > 0 is a constant and 𝑙𝑏𝑠 and 𝑢𝑏𝑠 are expression
sequences having the semantics max(𝑙𝑏𝑠) ≤ 𝑘 · 𝑠 ≤ min(𝑢𝑏𝑠). GetRangeΔ looks up the ranges
recorded in 𝑅𝑎𝑛𝑔𝑒𝑠 , e.g., an index 𝑥 [𝑖] may possibly have several lower/upper bounds originating
in program branches or query premises, which are further expanded with the range of 𝑥 ’s elements,
if 𝑥 has one. As well, GetRangeΔ infers ranges, e.g., if array 𝑥 is strictly positive, then a lower
bound for

∑
𝑥 [𝑙𝑏 : 𝑢𝑏] is 𝑢𝑏 − 𝑙𝑏 + 1, if the later can be proven positive, and similar for the upper

bound of
∑(DOR 𝑥) [𝑙𝑏 : 𝑢𝑏].

Finally, 𝑝′ ≤ 0 is re-written as 𝑝𝑎 · (𝑘 · 𝑠) + 𝑘 · 𝑝𝑏 ≤ 0, such that 𝑠 ∉ 𝑝𝑏 , and 𝑘 · 𝑠 is conservatively
replaced—i.e., with its upper bound if 𝑝𝑎 ≥ 0 and with its lower bound otherwise—generating two
sub-problems for each combination of lower and upper bounds from the sequence. If any succeeds
the query has been verified, otherwise the result is unknown. Our adaptation allows polynomial
ranges and polynomial queries, as well; for example, assuming the valid 𝑅𝑎𝑛𝑔𝑒𝑠 in Fig. 14, the query
𝑛2 + 3 ·𝑛 − 𝑗2 − 𝑗 ≤ 0 succeeds. The first eliminated symbol is 𝑗 , since its ranges transitively depend
on both 𝑖 and 𝑛, and the next one is 𝑖 . Note that if 𝑛 is chosen as the first symbol to eliminate, the
query fails, immediately resulting in∞ ≤ 0. Solve≤0Δ is guaranteed to terminate because (1) the
“triangular” shape of 𝑅𝑎𝑛𝑔𝑒𝑠 and 𝐸𝑞𝑢𝑖𝑣𝑠 do not introduce cycles, and (2) at every step, the target
symbol will be eliminated in a number of steps equal to its polynomial degree, which is finite.

5.3 Simplifying Index and Sum-of-Slice Expressions
We motivate our technique on one of the simpler queries generated by partition2, namely:
𝑗 + ∑𝐶 [ 𝑗 + 1 : 𝑛 − 1] − ∑

𝐶 [0 : 𝑖 − 1] > 0, where the context is 𝑅𝑎𝑛𝑔𝑒𝑠 = { 0 ≤ 𝑛 ∧ 0 ≤ 𝑖 ≤
𝑛 − 1 ∧ 0 ≤ 𝑗 ≤ 𝑖 − 1} and 𝐸𝑞𝑢𝑖𝑣𝑠 = {𝐶 [𝑖] = 1 ∧ 𝐶 [ 𝑗] = 0} and 𝐶 = DOR 𝑐 has elements in the
implicit range [0, 1]. Note that (1) 𝐸𝑞𝑢𝑖𝑣𝑠 cannot be applied because 𝐶 [𝑖] and 𝐶 [ 𝑗] do not appear
in the sums, and (2) the sum subtraction cannot be simplified because it cannot be proven that the
two slices overlap. Applying Algorithm 1 will end in a clearly false subquery 𝑗 > 𝑖 .

, Vol. 1, No. 1, Article . Publication date: July 2025.



Verifying Properties of Index Arrays in a Purely-Functional Data-Parallel Language 19

Unary Simplification
𝑈𝑛𝑆→ uses helper

𝐸𝑞𝑣
→ to rewrite symbol 𝑠 as Poly-expression 𝑝 . Δ ⊢ 𝑠 𝑈𝑛𝑆→ 𝑝

Δ.𝐸𝑞𝑢𝑖𝑣 (𝑠 ) = 𝑝

Δ ⊢ 𝑠 𝐸𝑣→ 𝑝

(Eqv1)

𝑠 = (DOR 𝑥𝑣 ) [𝑝𝑖𝑛𝑑 ]
∃𝑖 ∈ 1 . . . 𝑣 | Δ.𝐸𝑞𝑢𝑖𝑣 (𝑥𝑖 [𝑝𝑖𝑛𝑑 ] ) = 1

Δ ⊢ 𝑠
𝐸𝑞𝑣
→ 1

(Eqv2)

𝑠 =
∑
𝑥 [𝑝𝑏 : 𝑝𝑒 ]

Δ ⊢ true ?⇒ 𝑝𝑏 > 𝑝𝑒

Δ ⊢ 𝑠 𝑈𝑛𝑆→ 0
(0Sum)

𝑠 =
∑
𝑋 [𝑝𝑏 : 𝑝𝑒 ] Δ ⊢ true ?⇒ 𝑝𝑒 + 1 ≥ 𝑝𝑏

Δ ⊢ 𝑋 [𝑝𝑏 − 1]
𝐸𝑞𝑣
→ 𝑝𝑥

𝑏
𝑠′ =

∑
𝑥 [𝑝𝑏 − 1 : 𝑝𝑒 ]

Δ ⊢ 𝑠 𝑢𝑛𝑆→ 𝑠′ − 𝑝𝑥
𝑏

(UnBef)

𝑠 =
∑
𝑥 [𝑝𝑏 : 𝑝𝑒 ]

Δ ⊢ true ?⇒ 𝑝𝑏 = 𝑝𝑒

Δ ⊢ 𝑠 𝑈𝑛𝑆→ 𝑋 [𝑝𝑏 ]
(UnAft1)

Δ ⊢ 𝑠
𝐸𝑞𝑣
→ 𝑝

Δ ⊢ 𝑠 𝑈𝑛𝑆→ 𝑝

(UnAft2)

𝑠 =
∑
𝑋 [𝑝𝑏 : 𝑝𝑒 ] Δ ⊢ true ?⇒ 𝑝𝑒 ≥ 𝑝𝑏

Δ ⊢ 𝑋 [𝑝𝑏 ]
𝐸𝑞𝑣
→ 𝑝𝑥

𝑏
𝑠′ =

∑
𝑥 [𝑝𝑏 + 1 : 𝑝𝑒 ]

Δ ⊢ 𝑠 𝑈𝑛𝑆→ 𝑠′ + 𝑝𝑥
𝑏

(UnAft3)

𝑠 =
∑
𝑋 [_ : _]

OR 𝑠 = 𝑋 [_]
𝑋 = DOR 𝑥𝑣 𝑣 = 0

Δ ⊢ 𝑠 𝑈𝑛𝑆→ 0
(UnAft4)

𝑠 =
∑
𝑋 [𝑝𝑏 : 𝑝𝑒 ] Δ ⊢ true ?⇒ 𝑝𝑒 ≥ 𝑝𝑏

Δ ⊢ 𝑋 [𝑝𝑒 ]
𝑅𝑛𝑔
→ _ 𝑠′ =

∑
𝑥 [𝑝𝑏 : 𝑝𝑒 − 1]

Δ ⊢ 𝑠 𝑈𝑛𝑆→ 𝑠′ +𝑋 [𝑝𝑒 ]
(PeelOnRng)

Rewrites a sum of two terms 𝑘1 · 𝑠1 · 𝑡1 + 𝑘2 · 𝑠2 · 𝑡2 as a Poly 𝑝 . Δ ⊢ ((𝑘1, 𝑠1, 𝑡1), (𝑘2, 𝑠2, 𝑡2))
𝐵𝑖𝑛𝑆→ 𝑝

𝑠1 =
∑
𝑋1 [𝑝𝑏1 : 𝑝𝑒1 ] 𝑠2 =

∑
𝑋2 [𝑝𝑏2 : 𝑝𝑒2 ]

𝑋1 = 𝑋2 𝑘1 = 𝑘2 𝑡1 = 𝑡2 Δ ⊢ true ?⇒ 𝑝𝑒1 + 1 = 𝑝𝑏2

( Δ ⊢ true ?⇒ 𝑝𝑒1 + 1 ≥ 𝑝𝑏1 OR Δ ⊢ true ?⇒ 𝑝𝑒2 + 1 ≥ 𝑝𝑏2 )

Δ ⊢ ( (𝑘1, 𝑠1, 𝑡1 ), (𝑘2, 𝑠2, 𝑡2 ) )
𝐵𝑖𝑛𝑆→ 𝑘1 · 𝑡1 ·

∑
𝑋1 [𝑝𝑏1 : 𝑝𝑒2 ]

(B1)

𝑠1 =
∑
𝑋1 [𝑝𝑏 : 𝑝𝑒 ] 𝑠2 = 𝑋2 [𝑝𝑖 ] 𝑋1 = 𝑋2

𝑘1 = 𝑘2 𝑡1 = 𝑡2 Δ ⊢ true ?⇒ 𝑝𝑒 + 1 ≥ 𝑝𝑏

Δ ⊢ true ?⇒ 𝑝𝑖 = 𝑝𝑒 + 1 𝑠′ =
∑
𝑋1 [𝑝𝑏 : 𝑝𝑒 + 1]

Δ ⊢ ( (𝑘1, 𝑠1, 𝑡1 ), (𝑘2, 𝑠2, 𝑡2 ) )
𝐵𝑖𝑛𝑆→ 𝑘1 · 𝑠′ · 𝑡1

(B2)

𝑘1 = 𝑘2 𝑡1 = 𝑡2 𝑠1 =
∑(DOR 𝑥𝑣 ) [𝑝𝑏𝑥 : 𝑝𝑒𝑥 ] 𝑠2 =

∑(DOR 𝑦𝑤 ) [𝑝𝑏𝑦 : 𝑝𝑒𝑦 ] 𝑦1 ∈ Δ.𝐷𝑂𝑅 (𝑥1 ) 𝑥 ∩ 𝑦 = ∅ 𝑧 = 𝑥 ∪ 𝑦

𝑣 > 0 𝑤 > 0 (𝑠′2, 𝑠′3 ) = (
∑(DOR 𝑧 ) [𝑝𝑏𝑦 : 𝑝𝑒𝑥 ],

∑(DOR 𝑦) [𝑝𝑒𝑥 + 1 : 𝑝𝑒𝑦 ] ) Δ ⊢ true ?⇒ 𝑝𝑏𝑥 ≤ 𝑝𝑏𝑦 ≤ 𝑝𝑒𝑥 ≤ 𝑝𝑒𝑦

Δ ⊢ ( (𝑘1, 𝑠1, 𝑡1 ), (𝑘2, 𝑠2, 𝑡2 ) )
𝐵𝑖𝑛𝑆→ 𝑘1 · 𝑡1 ·

∑(DOR 𝑥 ) [𝑝𝑏𝑥 : 𝑝𝑏𝑦 − 1] + 𝑘1 · 𝑠′2 · 𝑡1 + 𝑘1 · 𝑠′3 · 𝑡1
(B3)

𝑘1 = −𝑘2 𝑡1 = 𝑡2 𝑠1 =
∑
𝑋 [𝑝𝑏𝑥 : 𝑝𝑒𝑥 ] 𝑠2 =

∑
𝑌 [𝑝𝑏𝑦 : 𝑝𝑒𝑦 ] 𝑋 = 𝑌

(𝑠′1, 𝑠′2 ) = (
∑
𝑋 [𝑝𝑏𝑥 : 𝑝𝑏𝑦 − 1], ∑𝑋 [𝑝𝑒𝑦 + 1 : 𝑝𝑒𝑥 ] ) Δ ⊢ true ?⇒ 𝑝𝑏𝑥 ≤ 𝑝𝑏𝑦 ≤ 𝑝𝑒𝑦 ≤ 𝑝𝑒𝑥

Δ ⊢ ( (𝑘1, 𝑠1, 𝑡1 ), (𝑘2, 𝑠2, 𝑡2 ) )
𝐵𝑖𝑛𝑆→ 𝑘1 · 𝑠′1 · 𝑡1 + 𝑘2 · 𝑠′2 · 𝑡2

(B4)

𝑘1 = −𝑘2 𝑡1 = 𝑡2 𝑠1 =
∑(DOR 𝑥 ) [𝑝𝑏𝑥 : 𝑝𝑒𝑥 ] 𝑠2 =

∑(DOR 𝑦) [𝑝𝑏𝑦 : 𝑝𝑒𝑦 ] 𝑧 = 𝑥 ∩ 𝑦 𝑧 ≠ ∅ 𝑥 ′ = 𝑥 − 𝑤 𝑦′ = 𝑦 − 𝑤

(𝑦1 = 𝑥1 OR 𝑦1 ∈ Δ.𝐷𝑂𝑅 (𝑥1 ) ) 𝑍 = DPR 𝑧 Δ ⊢ ( (𝑘1, 𝑍 [𝑝𝑏𝑥 : 𝑝𝑒𝑥 ], 𝑡1 ), (𝑘2, 𝑍 [𝑝𝑏𝑦 : 𝑝𝑒𝑦 ], 𝑡2 ) )
𝐵𝑖𝑛𝑆→ 𝑝𝑧

Δ ⊢ ( (𝑘1, 𝑠1, 𝑡1 ), (𝑘2, 𝑠2, 𝑡2 ) )
𝐵𝑖𝑛𝑆→ 𝑘1 · 𝑡1 ·

∑(DOR 𝑥 ′ ) [𝑝𝑏𝑥 : 𝑝𝑒𝑥 ] + 𝑘2 · 𝑡2 ·
∑(DOR 𝑦′ ) [𝑝𝑏𝑦 : 𝑝𝑒𝑦 ] + 𝑝𝑧

(B5)

Fig. 15. Rules for Unary and Binary Simplification of Expressions in Polynomial Representation.

Our strategy is organized in three steps: The first is to extend the ends of the summed slices with
the indices that have bindings in 𝐸𝑞𝑢𝑖𝑣 . This enables the second step, which perform simplifications
across sum-sum or sum-index pairs. Finally, the indices that have a binding in 𝐸𝑞𝑢𝑖𝑣𝑠 are separated
from sums and substituted with their rewrite. With our example, the first step will result in
𝑗 +∑𝐶 [ 𝑗 : 𝑛 − 1] −∑𝐶 [0 : 𝑖] + 1 > 0. Since both slices are now provably overlapping, i.e., context
says 𝑖 > 𝑗 , the common part can be eliminated, resulting in 𝑗+∑𝐶 [𝑖+1 : 𝑛−1]−∑𝐶 [0 : 𝑗−1]+1 > 0.
Applying Algorithm 1 will first replace6

∑
𝐶 [0 : 𝑗 − 1] with its upper bound 𝑗 then will replace∑

𝐶 [𝑖+1 : 𝑛−1] with its lower bound 0, resulting in 𝑗− 𝑗 +1 > 0, which succeeds after simplification.

6∑𝐶 [0 : 𝑗 − 1] has upper bound 𝑗 , resulting in transitive closure {𝑖, 𝑗, 𝑛}, hence it is the most “dependent” symbol.

, Vol. 1, No. 1, Article . Publication date: July 2025.



20 Nikolaj Hey Hinnerskov, Robert Schenck, and Cosmin E. Oancea

Figure 15 shows the inference rules of the simplification engine, which are composed as depicted
in Algorithm 2 (SimplifyΔ). Unary simplifications replace a symbol with an equivalent expression.
Helper rules Eqv1 and Eqv2 replace a symbol with its binding in 𝐸𝑞𝑢𝑖𝑣 , and a DOR index with 1
if one of the arrays in the disjunction has 1 as the binding of that index. 0Sum replaces sums of
provably empty slices with 0. UnBef extends a slice sum with an ending index that is bound in
𝐸𝑞𝑢𝑖𝑣𝑠 . It requires that the slice is provably potentially empty in a nice way 𝑃𝐸𝑁𝑊 , i.e., its lower
bound is at most 1 higher than its upper bound, which guarantees that the extended slice contains
said element. Simplify’s first stage consists of applying the equivalences in 𝐸𝑞𝑢𝑖𝑣𝑠 (SubstEqivsΔ),
0Sum, and a fixed-point application of UnBef on any matching symbols of degree one.
The second stage consists of applying the binary rules B1-5 to a fix point. They denote an

equivalent rewrite 𝑝 across any (sum of) two terms 𝑘1,2 · 𝑠1,2 · 𝑡1,2 of a polynomial 𝑝𝑡𝑔𝑡 , where 𝑘1,2
are constants, 𝑠1,2 are symbols of degree 1, and 𝑡1,2 are a product of symbols not containing 𝑠1,2.
The rewrite of 𝑝𝑡𝑔𝑡 is thus 𝑝𝑡𝑔𝑡 − 𝑘1 · 𝑠1 · 𝑡1 − 𝑘2 · 𝑠2 · 𝑡2 + 𝑝 . B1 rewrites two sums of slices that

are in continuation of each other as one sum, and requires that at least one of them is 𝑃𝐸𝑁𝑊 . B2
extends a slice sum with an end index. B3 simplifies two sums of overlapping slices corresponding
to DOR arrays, whose sequences of variable names do not overlap, but are in the same Δ.𝐷𝑂𝑅 class.
B4 eliminates the common part of two overlapping slice sums, corresponding to the same array,
that are subtracted, and B5 extends this simplification of slice-sum subtraction to DOR arrays. Two
additional rules (not shown), analogous to B3 and B4, handle the cases when 𝑝𝑏𝑥 ≤ 𝑝𝑏𝑦 ≤ 𝑝𝑒𝑦 ≤ 𝑝𝑒𝑥

and 𝑝𝑏𝑥 ≤ 𝑝𝑏𝑦 ≤ 𝑝𝑒𝑥 ≤ 𝑝𝑒𝑦 , respectively.
The final pass applies 0Sum followed by a fix-point application of unary rules UnAft1-6. They

collapse a singleton slice to an index (UnAft1), replace symbols bound in 𝐸𝑞𝑢𝑖𝑣𝑠 (UnAft2), peel-off
an index bound in 𝐸𝑞𝑢𝑖𝑣𝑠 from an end of a slice sum (UnAft3), and eliminate null DOR slices/indices.
Finally, PeelOnRng, not part of simplification, peels off an end-of-slice-sum index that has a more
specialized range than the one of the whole array, which improves the accuracy of SolveΔ.

5.4 Exploiting Injective Properties with the Equality Solver

Queries Δ ⊢ 𝑐1
?⇒ 𝑐2 are discharged by the equality solver through syntactical rewrites on the

internal language (Fig. 3). First the antecedent of the query, 𝑐1, is expanded with its transitive
equalities. Then, the transitive equalities are rewritten using properties found in Δ. This expanded
query is sent to the inequality solver (which may solve 𝑠1 == 𝑠2 as the queries 𝑠1 ≥ 𝑠2 ∧ 𝑠1 ≤ 𝑠2.)
More specifically, 𝑐1 is converted to CNF yielding 𝑐′1, and the first conjunct is chosen to be the

guide equation. The right hand side of the guide equation is then substituted for the left hand side
everywhere in 𝑐′1. Transitive equalities are then extracted by treating each equality as edges in
a graph (symbols in 𝑐1 being the nodes) and then computing a spanning forest using depth-first
search. Finally, transitive equalities are conjoined with 𝑐′1 and the syntactical rewrites are applied.
For example, a rule exploiting injectivity is:

Rcd = Δ.𝐼𝑛 𝑗 (𝑥) Δ ⊢ true ?⇒ 𝑖 ∈ Rcd ∧ 𝑗 ∈ Rcd

Δ ⊢ K⟨𝑥 [𝑖] = 𝑥 [ 𝑗]⟩ → 𝑖 = 𝑗
(Eq.Inj)

In rules such as InjGe the appropriate guide is obvious (equality on the values of the guarded
expressions); if there is no obvious choice, the guides can be tried exhaustively.

, Vol. 1, No. 1, Article . Publication date: July 2025.



Verifying Properties of Index Arrays in a Purely-Functional Data-Parallel Language 21

def filter_by [n] 't (cs: [n]bool) (xs: [n]t)
: []t | \ys −> FiltPart ys xs (\i −> cs[i]) (\_ −> true) =
Analogous to partition2 in Fig. 2; uses scatter.

def get_smallest_pairs [n]
(n_verts: i64) (n_es: i64)
(es: [n]i64 | Range es (0, n_verts))
(is: [n]i64 | Inj is (−∞,∞))
: ([]i64, []i64) | \(es', is') −>

Inj es' (−∞,∞) && Inj is' (−∞,∞) =
let H = hist i64.min n_es n_verts es is
let cs =map2 (\i j −> H[i] == j) es is
let xs = filter_by cs es
let ys = filter_by cs is
in (xs, ys)

def kmeans_ker [num_cols] [nnz] [n]
(row: i64 | Range row (0,n))
(pointers: [n+1]i64 | Range pointers (0,nnz))
(cluster: [num_cols]f32) (values: [nnz]f32)
(indices: [nnz]i64 | Range indices (0,num_cols))
: f32 =

let index_start = pointers[row]
let nnz_sgm = pointers[row+1] − index_start
in loop (correction) = (0) for j < nnz_sgm do

let element_value = values[index_start+j]
let column = indices[index_start+j]
let cluster_value = cluster[column]
let diff = element_value − 2 ∗ cluster_value
let res = correction + diff∗element_value
in res

Fig. 16. Compute kernels from Maximal Matching (left) and sparse 𝑘-means (right).

6 EVALUATION
We illustrate the practicality of our system through three case studies.

Statically safe scatters. We verify Futhark’s maximal matching benchmark,7 which implements a
graph algorithm from the Problem Based Benchmark Suite [1] that iteratively filters graph edges
using scatter operations. The most challenging kernel to verify, get_smallest_pairs, is shown
in Fig. 16. The postcondition says that the values in each output array es' and is' are unique.
We automatically verify both of these properties using the injectivity of is. After index function
inference, we have Γ(𝑒𝑠) = for 𝑖 < 𝑛 . 𝑡𝑟𝑢𝑒 ⇒ 𝑒𝑠 [𝑖] and Δ.𝐼𝑛 𝑗 (𝑖𝑠) = (−∞,∞) in the environment.
The postcondition Inj es' (−∞,∞) starts a proof query, which will match first InjV2 and then
InjF1. InjF1 attempts two rewrites matching InjGE and MonGe, respectively. InjGe succeeds:

Δ′ ⊢ 𝑒𝑠 [𝑖 ] = 𝑒𝑠 [ 𝑗 ] ∧𝐻 [𝑖𝑠 [𝑒𝑠 [𝑖 ] ] ] = 𝑖𝑠 [𝑖 ] ∧𝐻 [𝑖𝑠 [𝑒𝑠 [ 𝑗 ] ] ] = 𝑖𝑠 [ 𝑗 ] ?⇒ 𝑖 = 𝑗

(fresh 𝑗 ) Δ ∧ 0 ≤ 𝑗 < 𝑛 ∧ 0 ≤ 𝑖 < 𝑛 ⊢𝑖,𝑗 (𝐻 [𝑖𝑠 [𝑒𝑠 [𝑖 ] ] ] = 𝑖𝑠 [𝑖 ] ⇒ 𝑒𝑠 [𝑖 ] )
𝐼𝑛𝑗=
→ true

(InjGe)

Δ ⊢ for 𝑖 < 𝑛 . 𝐻 [𝑖𝑠 [𝑒𝑠 [𝑖 ] ] ] = 𝑖𝑠 [𝑖 ] ⇒ 𝑒𝑠 [𝑖 ]
𝐼𝑛𝑗
→ true

(InjF1)

Γ;Δ ⊢ for 𝑖 < 𝑛 .
(𝑐 ∧ 𝑒𝑠 [𝑖 ] ∈ (−∞,∞) ⇒ 𝑒𝑠 [𝑖 ] )∧(¬𝑐 ∨ 𝑒𝑠 [𝑖 ] ∉ (−∞,∞) ⇒ ∞) { for 𝑖 < 𝑛 . 𝐻 [𝑖𝑠 [𝑒𝑠 [𝑖 ] ] ] = 𝑖𝑠 [𝑖 ] ⇒ 𝑒𝑠 [𝑖 ]

Δ.𝐹𝑃 (𝑒𝑠′ ) = (𝑒𝑠, 𝜆𝑖.

𝑐︷                      ︸︸                      ︷
𝐻 [𝑖𝑠 [𝑒𝑠 [𝑖 ] ] ] = 𝑖𝑠 [𝑖 ], _)

Γ;Δ ⊢ ( (−∞,∞), 𝑒𝑠′ )
𝐼𝑛𝑗
→ (true,Δ)

(InjV2)

The query ( ?⇒) antecedent is sent to the equality solver with guide 𝑒𝑠 [𝑖] = 𝑒𝑠 [ 𝑗], which is substituted
into the other terms before expanding the antecedent with transitive equalities:

𝑒𝑠 [𝑖] = 𝑒𝑠 [ 𝑗] ∧ 𝐻 [𝑖𝑠 [𝑒𝑠 [𝑖]]] = 𝑖𝑠 [𝑖] ∧ 𝐻 [𝑖𝑠 [𝑒𝑠 [𝑖]]] = 𝑖𝑠 [ 𝑗] ∧ 𝑖𝑠 [𝑖] = 𝑖𝑠 [ 𝑗]

Eq.Inj is then matches and simplifies the conjunct 𝑖𝑠 [𝑖] = 𝑖𝑠 [ 𝑗] to 𝑖 = 𝑗 since Δ.𝐼𝑛 𝑗 (𝑖𝑠) = (−∞,∞).
Finally, the expanded (now trivial) query is sent to the solver: Δ′ ⊢ 𝑒𝑠 [𝑖 ] = 𝑒𝑠 [ 𝑗 ] ∧ . . . ∧ 𝑖 = 𝑗

?⇒ 𝑖 = 𝑗 .
Obviating dynamic bounds checks. We have verified that indexing is within bounds for a key

computational kernel from the sparse 𝑘-means benchmark in [52], shown in Fig. 16 (right). For
each indexing statement, a query is sent to the solver that checks whether the indexing expression
is within bounds of the array. By gradually strengthening the preconditions, the user can let
the compiler guide them towards the weakest preconditions needed. For example, removing all
preconditions shown, the compiler reports:
7Found at https://github.com/diku-dk/futhark-benchmarks.

, Vol. 1, No. 1, Article . Publication date: July 2025.

https://github.com/diku-dk/futhark-benchmarks


22 Nikolaj Hey Hinnerskov, Robert Schenck, and Cosmin E. Oancea

% of
Properties & Check Compile

Program annotations Safe #S #A time time
maxMatching Range, Equiv, Inj ✓ 6 14 0.7s 29%
kmeans_ker Range ✓ 0 3 0.1s 12%
partition2 Equiv, FP ✓ 1 3 0.4s 34%
partition3 Equiv, FP ✓ 1 3 0.6s 44%
partition2L Range, Equiv, FP ✓ 1 3 3.6s 82%
filter Equiv, FP ✓ 1 3 0.3s 27%
filter_seg Range, Equiv ✓ 1 3 1.6s 68%

Program Base Speedup
& Data (𝑚𝑠) Static +Opt
kmeans

movielens 280 2.2×
nytimes 315 1.9×
scrna 861 2.2×

partition2
50M 12 4.4× 4.7×
100M 38 7.0× 7.5×
200M 135 12.2× 12.8×

Fig. 17. Left: Summary of evaluated programs. IFP and FP abbreviate InvFiltPart and FiltPart, respectively.

Safe reports whether all indexing and scatters are verified. #S and #A denote the number of scatters and

annotations in the program. Check time is the time taken to infer index functions and prove properties (on a

modern AMD CPU). Right: Performance results on an A100 GPU using Futhark’s CUDA backend. Base and

static denote, respectively, dynamic and static verification. +Opt removes initialisation of the scattered array.

kmeans.fut:7:21-34: Unsafe indexing: pointers[row] (failed to show: True => 0 ≤ row).

which is rectified by adding precondition Range row (0,∞). Repeating this process until all errors
are addressed yields the preconditions shown in the figure. We compile 𝑘-means to a CUDA
program using the Futhark compiler [36]. In Fig. 17 (right), an average 2-times speed up is observed
on datasets movielens [25], nytimes and scrna [39] (using parameters from [52]) by eliminating
dynamic bounds checks. In Futhark, dynamic bounds checking is handled by unstructured jumps to
the end of a CUDA kernel [27], which likely inhibits the nvcc compiler from effectively optimizing
instruction-level parallelism. A dynamic approach based on slicing a safety predicate [30] may be
cheaper in this case, but it will incur larger overheads to the simpler (common) cases.
Segmented operations. We conclude our case studies with partition2L, a batched version of

partition2 (Fig. 2), that applies to a jagged array with potentially empty rows. The function takes
as input an array shp of type [m]i64 whose elements denote the size of each row in the jagged
array and an array csL of type [n]bool where n = sum shp, and outputs an array of indices,
that when scattered will produce a partitioning of each row in the jagged array according to csL.
The full program (not shown here) makes use of sgmSum, mkSgmDescr, and mkII from Fig. 2. The
inferred index function of the indices used by the final scatter, denoted 𝑦𝑠 , intuitively describes
the semantics of the program:
𝑚⋃
𝑘=0

.for 𝑖 ≥
𝑘−1∑︁
𝑗=0
(𝑠ℎ𝑝 [ 𝑗 ] ) . (𝑐𝑠 [𝑖 ] ⇒

𝑘−1∑︁
𝑗=0
(𝑠ℎ𝑝 [ 𝑗 ] ) +

𝑖−1∑︁
𝑗=

∑𝑘−1
𝑗 ′=0 (𝑠ℎ𝑝 [ 𝑗

′ ])

(𝑐𝑠 [ 𝑗 ] ) )
∧
(¬𝑐𝑠 [𝑖 ] ⇒ 𝑖 +

∑𝑘
𝑗 ′=0 (𝑠ℎ𝑝 [ 𝑗

′ ])−1∑︁
𝑗=𝑖+1

(𝑐𝑠 [ 𝑗 ] ) )

For each segment 𝑘 = 0, . . . ,𝑚, if 𝑐𝑠 [𝑖] is true, then index 𝑖 maps to the row offset,
∑𝑘−1

𝑗=0 (𝑠ℎ𝑝 [ 𝑗]),
plus the number of trues in 𝑐𝑠 [𝑖] that come before 𝑖 in that segment; otherwise, index 𝑖 maps to 𝑖
plus the number of trues that come after 𝑖 in that segment. Verification of partition2L essentially
comes down to verifying 𝐼𝑛𝑣𝐹𝑖𝑙𝑡𝑃𝑎𝑟𝑡 𝑦𝑠 (𝜆𝑖. 𝑡𝑟𝑢𝑒) (𝑚,𝑘,

∑𝑘−1
𝑗=0 (𝑠ℎ𝑝 [ 𝑗]), 𝜆𝑖 . 𝑐𝑠 [𝑖]), which succeeds.

Additional benchmarks.We also verify and report on the following programs: partition2 and
partition3 which partition arrays into two and three parts, respectively, and filter/filter_seg
which filter a (segmented) array according to a predicate. Figure 17 summarizes the evaluation;
compilation is timed using Futhark’s CUDA backend. Check times increase when the index functions
are complex (part2indicesL) or there are many annotations (maxMatching). Still, most programs
take less than one second to check.
Fig. 17 (right) shows the impact of static vs. dynamic verification of scatter in partition2

compiled to CUDA and run on arrays of random floats with 50, 100, and 200 million elements.
The static version is further optimised by leaving the scattered array uninitialized—safe because
we prove that all locations are overwritten (Static+Opt). Speedup factors of 4–12 are observed:

, Vol. 1, No. 1, Article . Publication date: July 2025.



Verifying Properties of Index Arrays in a Purely-Functional Data-Parallel Language 23

dynamic verification of scatter breaks fusion opportunities, increases the amount of irregular
accesses to memory, and requires the use of reduce-by-index [29] to conform with the work
asymptotic. The latter uses atomic (min) accumulations that thresh the L2 cache, thus exacerbating
the overhead.

7 RELATEDWORK
Liquid (Haskell). Liquid Types enhance Hindley-Milner type systems with refinement types [49, 63],
generating verification conditions (VCs) in the QF-EUFLIA logic that SMT solvers check. In Liquid
Haskell, refinement reflection [64] integrates source functions into refinements and automates
unfolding their definitions for proofs, but still requires manual proofs (in a similar fashion to
theorem provers like Rocq or Agda) for non-trivial reasoning and mandates top-level functions for
each component. For example, verifying partition2 (without the final scatter) demands program
restructuring and manual proofs for properties like injectivity, which we still could not establish.
Verification of partition3 is harder still and partition2L adds another layer of complexity
through the use of segmented shapes and scatter, which is not an operation that can be easily
expressed in (Liquid) Haskell. Our system, by contrast, uses index functions to automatically infer
dependencies and prove array properties without structural constraints, freeing programmers from
proof-writing, aiding domain experts, and separating program and proof concerns.

𝐹★ and Pulse. 𝐹★ [58] is a programming language and proof assistant with dependent and
refinement types, supporting effects and combining SMT-based proof automation with interactive
proof writing. It automates term reasoning via reductions (similar to Liquid Haskell’s rewriting)
and uses monadic effects to separate computation and proof. Still, it shares many of Liquid Haskell’s
limitations, requiring manual proofs for properties our system handles automatically, despite a more
ergonomic programming discipline. Pulse [59], embedded in 𝐹★, targets concurrent programming
with mutable state using Concurrent Separation Logic [11] at the statement level to reason about
heaps. For instance, verifying an in-place version of partition2 in the context of quicksort checks
the two buffers against a pivot and ensures non-overlap, but this doesn’t extend to a data-parallel
context that fisses the computation into bulk operations and uses scatter to write all indices at once.

The reviewed approaches rely on powerful SMT solvers such as Z3 [18], which uses e-graphs [17]
to generate and test all equivalent rewrites. Our rewrites of index and sum symbols (Section 5.3) are
effective, but are challenging to express in Z3. Our simplification strategy uses directed rewrites,
which are much cheaper computationally than e-graphs, given that (1) simplification must be
performed after each symbol elimination, (2) each simplification may trigger many rewrites, and
(3) the only possible objective function is whether the query succeeds.

Linear Array Logics. Dependent ML [67] and its extension ATS [68] restrict dependent values to
a limited language to ensure decidability. Dependent ML is parametric in this language, enabling
specialization for tasks like static array bounds checking via linear constraints [69]. ATS further al-
lows explicit proof terms, though it requires intertwining proof and program despite their syntactic
separation. Other systems, such as the quantifier-free logic by Daca et al. [15] for counting and par-
titioning, Bradley et al.’s logic [10] for index ranges and sortedness using Presburger arithmetic, and
Qube [60] for verifying array indexing and shape matching, are restricted to linear indexing, which
exclude operations like a[b[i]]. In comparison, we target data-parallel programs with non-linear
indexing (e.g., gather/scatter/scan), which is the case of all benchmarks evaluated in Section 5.4.
Dependece-Analyses on Arrays. Our verification analysis takes inspiration from work in auto-

matic optimization of loop-based code. Related analyses have shown that choosing a suitable
representation for access patterns [35, 41, 50] is key to scaling analysis interprocedurally, either
statically [24, 43, 65] or by combining static and dynamic [16, 42, 50] to cover challenging non-
affine code instances. Importantly, dynamic analyses use complex transformations such as program

, Vol. 1, No. 1, Article . Publication date: July 2025.



24 Nikolaj Hey Hinnerskov, Robert Schenck, and Cosmin E. Oancea

slicing and hoisting to extract and test at runtime sufficient conditions for statically irreducible
queries. These often boil down to establishing array properties such as permutation [20, 57], injec-
tivity [16, 50], monotonicity [42, 43]. By establishing array properties early, our approach could in
principle simplify dependence analyses and eliminate expensive runtime overheads.
In hopeless cases that require some dynamic verification,8 property specification still allows

efficient code generation and placement of the inspector code (e.g., avoiding program slicing
and hoisting). Finally, reminded by work on parametric polymorphism [13, 46], specification of
array properties should be supported across multi-language components, which may separate the
definition of an array from its use; otherwise optimization of such codes may require suboptimal
speculation [45].

Scheduling Languages & Verfication of Compiler Transformations.Work on verifying the specifica-
tion, code-transformations and the resulting low-level code of scheduling DSLs such as Halide [48]
include improvements to its term rewriting system [38], end-to-end translation validation of affine
specifications [14], and HaliVer [62], which aims to verify properties of (1) the specification, which
utilize linear indexing, and (2) of the low-level generated code, which employs permission-based
separation logic [8] to verify, e.g., memory safety. Finally, bounded translation validation tools
such as Alive2 [33, 34] are used to verify code transformations of LLVM. These directions are
complementary to our work.

8 CONCLUSIONS
We presented a framework for inferring and verifying properties of integral arrays in the context of
a pure data-parallel array language. Our solution supports a small but powerful set of properties—
namely range, equivalence, monotonicity, injectivity, bijectivity, and filtering/partitioning—that are
easy to use and expose a rich compositional algebra to the compiler. This is used to scale (automate)
the analysis (restricting user intervention to strategic places) and to optimize the program.

Our evaluation demonstrates that our framework is capable of verifying challenging code patterns
from graph algorithms and from flattening irregular nested parallelism (e.g., the batch application of
two-way partitioning to jagged arrays in flat form). It also shows that eliminating dynamic checks
and redundant initializations results in significant GPU speedups, and that our design facilitates
debugging—e.g., by user inspection of the context and index function(s).

REFERENCES
[1] Daniel Anderson, Guy E. Blelloch, Laxman Dhulipala, Magdalen Dobson, and Yihan Sun. 2022. The problem-based

benchmark suite (PBBS), V2. In Proceedings of the 27th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (Seoul, Republic of Korea) (PPoPP ’22). Association for Computing Machinery, New York, NY, USA,
445–447. https://doi.org/10.1145/3503221.3508422

[2] Lubin Bailly, Troels Henriksen, and Martin Elsman. 2023. Shape-Constrained Array Programming with Size-Dependent
Types. In Proceedings of the 11th ACM SIGPLAN International Workshop on Functional High-Performance and Numerical
Computing. 29–41.

[3] Tal Ben-Nun, Johannes de Fine Licht, Alexandros N. Ziogas, Timo Schneider, and TorstenHoefler. 2019. Stateful Dataflow
Multigraphs: A Data-Centric Model for Performance Portability on Heterogeneous Architectures. In Proceedings of the
International Conference for High Performance Computing, Networking, Storage and Analysis (SC ’19). ACM, Article 81,
14 pages. https://doi.org/10.1145/3295500.3356173

[4] Tal Ben-Nun, Linus Groner, Florian Deconinck, Tobias Wicky, Eddie Davis, Johann Dahm, Oliver D. Elbert, Rhea
George, Jeremy McGibbon, Lukas Trümper, Elynn Wu, Oliver Fuhrer, Thomas Schulthess, and Torsten Hoefler. 2022.
Productive performance engineering for weather and climate modeling with Python. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis (SC ’22). IEEE Press, Article 73, 14 pages.

[5] Yves Bertot and Pierre Castéran. 2013. Interactive theorem proving and program development: Coq’Art: the calculus of
inductive constructions. Springer Science & Business Media.

8One example is the Brownian Bridge component of the option pricing describe in [40], which uses three indirect arrays.

, Vol. 1, No. 1, Article . Publication date: July 2025.

https://doi.org/10.1145/3503221.3508422
https://doi.org/10.1145/3295500.3356173


Verifying Properties of Index Arrays in a Purely-Functional Data-Parallel Language 25

[6] Guy E. Blelloch. 1989. Scans as Primitive Parallel Operations. Computers, IEEE Transactions 38, 11 (1989), 1526–1538.
[7] Guy E. Blelloch and John Greiner. 1996. A Provable Time and Space Efficient Implementation of NESL. In Proceedings

of the First ACM SIGPLAN International Conference on Functional Programming (Philadelphia, Pennsylvania, USA) (ICFP
’96). ACM, New York, NY, USA, 213–225. https://doi.org/10.1145/232627.232650

[8] Richard Bornat, Cristiano Calcagno, Peter O’Hearn, and Matthew Parkinson. 2005. Permission accounting in separation
logic. In Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Long
Beach, California, USA) (POPL ’05). Association for Computing Machinery, New York, NY, USA, 259–270. https:
//doi.org/10.1145/1040305.1040327

[9] Ana Bove, Peter Dybjer, and Ulf Norell. 2009. A brief overview of Agda–a functional language with dependent types.
In Theorem Proving in Higher Order Logics: 22nd International Conference, TPHOLs 2009, Munich, Germany, August 17-20,
2009. Proceedings 22. Springer, 73–78.

[10] Aaron R Bradley, Zohar Manna, and Henny B Sipma. 2006. What’s decidable about arrays?. In Verification, Model
Checking, and Abstract Interpretation: 7th International Conference, VMCAI 2006, Charleston, SC, USA, January 8-10,
2006. Proceedings 7. Springer, 427–442.

[11] Stephen Brookes and Peter W O’Hearn. 2016. Concurrent separation logic. ACM SIGLOG News 3, 3 (2016), 47–65.
[12] Manuel M.T. Chakravarty, Gabriele Keller, Sean Lee, Trevor L. McDonell, and Vinod Grover. 2011. Accelerating

Haskell array codes with multicore GPUs. In Proceedings of the Sixth Workshop on Declarative Aspects of Multicore
Programming (Austin, Texas, USA) (DAMP ’11). Association for Computing Machinery, New York, NY, USA, 3–14.
https://doi.org/10.1145/1926354.1926358

[13] Y. Chicha, M. Lloyd, C. Oancea, and S. M. Watt. 2004. Parametric Polymorphism for Computer Algebra Software
Components. In Procs. of the 6th Int. Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC
’04). Mirton Publishing House, 119–130.

[14] Basile Clément and Albert Cohen. 2022. End-to-end translation validation for the halide language. 6, OOPSLA1, Article
84 (April 2022), 30 pages. https://doi.org/10.1145/3527328

[15] Przemysław Daca, Thomas A Henzinger, and Andrey Kupriyanov. 2016. Array folds logic. In International Conference
on Computer Aided Verification. Springer, 230–248.

[16] Francis H. Dang, Hao Yu, and Lawrence Rauchwerger. 2002. The R-LRPD Test: Speculative Parallelization of Partially
Parallel Loops. In Proceedings of the 16th International Parallel and Distributed Processing Symposium (IPDPS ’02). IEEE
Computer Society, USA.

[17] Leonardo de Moura and Nikolaj Bjørner. 2007. Efficient E-Matching for SMT Solvers. In Automated Deduction –
CADE-21, Frank Pfenning (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 183–198.

[18] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: an efficient SMT solver. In Proceedings of the Theory and Practice of
Software, 14th International Conference on Tools and Algorithms for the Construction and Analysis of Systems (Budapest,
Hungary) (TACAS’08/ETAPS’08). Springer-Verlag, Berlin, Heidelberg, 337–340.

[19] Ivo Gabe de Wolff, David P. van Balen, Gabriele K. Keller, and Trevor L. McDonell. 2024. Zero-Overhead Parallel Scans
for Multi-Core CPUs. In Proceedings of the 15th International Workshop on Programming Models and Applications for
Multicores and Manycores (PMAM ’24). Association for Computing Machinery, 52–61. https://doi.org/10.1145/3649169.
3649248

[20] Chen Ding and Ken Kennedy. 1999. Improving cache performance in dynamic applications through data and computa-
tion reorganization at run time. In Proceedings of the ACM SIGPLAN 1999 Conference on Programming Language Design
and Implementation (Atlanta, Georgia, USA) (PLDI ’99). Association for Computing Machinery, New York, NY, USA,
229–241. https://doi.org/10.1145/301618.301670

[21] Joseph Fourier. 1827. Histoire de l’Académie, partie mathématique (1824). Mémoires de l’Académie des sciences de
l’Institut de France 7 (1827).

[22] Bastian Hagedorn, Larisa Stoltzfus, Michel Steuwer, Sergei Gorlatch, and Christophe Dubach. 2018. High Performance
Stencil Code Generation with Lift. In Int. Symposium on Code Generation and Optimization (CGO) (Vienna, Austria)
(CGO 2018). ACM, 100–112. https://doi.org/10.1145/3168824

[23] Mary Hall, Cosmin E. Oancea, Anne Elster, Ari Rasch, Sameeran Joshi, Amir Mohammad Tavakkoli, and Richard
Schulze. 2025. Scheduling Language Chronology: Past, Present, and Future. ACM Trans. Archit. Code Optim. (June
2025). https://doi.org/10.1145/3743135

[24] Mary W. Hall, Saman P. Amarasinghe, Brian R. Murphy, Shih-Wei Liao, and Monica S. Lam. 2005. Interprocedural
Parallelization Analysis in SUIF. Trans. on Prog. Lang. and Sys. (TOPLAS) 27(4) (2005), 662–731.

[25] F. Maxwell Harper and Joseph A. Konstan. 2015. The MovieLens Datasets: History and Context. ACM Trans. Interact.
Intell. Syst. 5, 4, Article 19 (Dec. 2015), 19 pages. https://doi.org/10.1145/2827872

[26] Troels Henriksen. 2017. Design and Implementation of the Futhark Programming Language. Ph. D. Dissertation.
University of Copenhagen, Universitetsparken 5, 2100 Copenhagen.

[27] Troels Henriksen. 2021. Bounds checking on GPU. International Journal of Parallel Programming 49, 6 (2021), 761–775.

, Vol. 1, No. 1, Article . Publication date: July 2025.

https://doi.org/10.1145/232627.232650
https://doi.org/10.1145/1040305.1040327
https://doi.org/10.1145/1040305.1040327
https://doi.org/10.1145/1926354.1926358
https://doi.org/10.1145/3527328
https://doi.org/10.1145/3649169.3649248
https://doi.org/10.1145/3649169.3649248
https://doi.org/10.1145/301618.301670
https://doi.org/10.1145/3168824
https://doi.org/10.1145/3743135
https://doi.org/10.1145/2827872


26 Nikolaj Hey Hinnerskov, Robert Schenck, and Cosmin E. Oancea

[28] Troels Henriksen and Martin Elsman. 2021. Towards Size-Dependent Types for Array Programming. In Proceedings of
the 7th ACM SIGPLAN International Workshop on Libraries, Languages and Compilers for Array Programming (Virtual,
Canada) (ARRAY 2021). Association for Computing Machinery, 1–14. https://doi.org/10.1145/3460944.3464310

[29] Troels Henriksen, Sune Hellfritzsch, Ponnuswamy Sadayappan, and Cosmin Oancea. 2020. Compiling Generalized
Histograms for GPU. In Proceedings of the International Conference for High Performance Computing, Networking,
Storage and Analysis (Atlanta, Georgia) (SC ’20). IEEE Press, Article 97, 14 pages.

[30] Troels Henriksen and Cosmin E. Oancea. 2014. Bounds Checking: An Instance of Hybrid Analysis. In Proceedings of
ACM SIGPLAN International Workshop on Libraries, Languages, and Compilers for Array Programming (ARRAY’14).
Association for Computing Machinery, New York, NY, USA, 88–94. https://doi.org/10.1145/2627373.2627388

[31] Troels Henriksen, Niels GW Serup, Martin Elsman, Fritz Henglein, and Cosmin E Oancea. 2017. Futhark: purely
functional GPU-programming with nested parallelism and in-place array updates. In Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language Design and Implementation. 556–571.

[32] Troels Henriksen, Frederik Thorøe, Martin Elsman, and Cosmin Oancea. 2019. Incremental Flattening for Nested
Data Parallelism. In Proceedings of the 24th Symposium on Principles and Practice of Parallel Programming (Washington,
District of Columbia) (PPoPP ’19). ACM, New York, NY, USA, 53–67. https://doi.org/10.1145/3293883.3295707

[33] Nuno P. Lopes, Juneyoung Lee, Chung-Kil Hur, Zhengyang Liu, and John Regehr. 2021. Alive2: bounded translation
validation for LLVM. In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language
Design and Implementation (Virtual, Canada) (PLDI 2021). Association for Computing Machinery, New York, NY, USA,
65–79. https://doi.org/10.1145/3453483.3454030

[34] Nuno P. Lopes, David Menendez, Santosh Nagarakatte, and John Regehr. 2018. Practical verification of peephole
optimizations with Alive. Commun. ACM 61, 2 (Jan. 2018), 84–91. https://doi.org/10.1145/3166064

[35] Sungdo Moon and Mary W. Hall. 1999. Evaluation of predicated array data-flow analysis for automatic parallelization.
In Proceedings of the Seventh ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (Atlanta,
Georgia, USA) (PPoPP ’99). Association for Computing Machinery, New York, NY, USA, 84–95. https://doi.org/10.
1145/301104.301112

[36] PhilipMunksgaard, Svend Lund Breddam, Troels Henriksen, Fabian Cristian Gieseke, and Cosmin Oancea. 2021. Dataset
Sensitive Autotuning of Multi-versioned Code Based on Monotonic Properties. In Trends in Functional Programming,
Viktória Zsók and John Hughes (Eds.). Springer International Publishing, Cham, 3–23.

[37] Philip Munksgaard, Troels Henriksen, Ponnuswamy Sadayappan, and Cosmin Oancea. 2022. Memory Optimizations
in an Array Language . In SC22: International Conference for High Performance Computing, Networking, Storage and
Analysis. IEEE Computer Society, Los Alamitos, CA, USA, 1–15. https://doi.org/10.1109/SC41404.2022.00036

[38] Julie L. Newcomb, Andrew Adams, Steven Johnson, Rastislav Bodik, and Shoaib Kamil. 2020. Verifying and improving
Halide’s term rewriting system with program synthesis. Proc. ACM Program. Lang. 4, OOPSLA, Article 166 (Nov. 2020),
28 pages. https://doi.org/10.1145/3428234

[39] Corey J Nolet, Divye Gala, Edward Raff, Joe Eaton, Brad Rees, John Zedlewski, and Tim Oates. 2022. GPU semiring
primitives for sparse neighborhood methods. Proceedings of Machine Learning and Systems 4 (2022), 95–109.

[40] Cosmin E. Oancea, Christian Andreetta, Jost Berthold, Alain Frisch, and Fritz Henglein. 2012. Financial software on
GPUs: between Haskell and Fortran. In Proceedings of the 1st ACM SIGPLAN Workshop on Functional High-Performance
Computing (FHPC ’12). Association for Computing Machinery, 61–72. https://doi.org/10.1145/2364474.2364484

[41] Cosmin E. Oancea and Alan Mycroft. 2008. Set-Congruence Dynamic Analysis for Thread-Level Speculation (TLS).
Springer-Verlag, Berlin, Heidelberg, 156–171. https://doi.org/10.1007/978-3-540-89740-8_11

[42] Cosmin E. Oancea and Lawrence Rauchwerger. 2013. A Hybrid Approach to Proving Memory Reference Monotonicity.
In Languages and Compilers for Parallel Computing, Sanjay Rajopadhye and Michelle Mills Strout (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 61–75.

[43] Cosmin E. Oancea and Lawrence Rauchwerger. 2015. Scalable Conditional Induction Variables (CIV) Analysis. In
Proceedings of the 13th Annual IEEE/ACM International Symposium on Code Generation and Optimization (San Francisco,
California) (CGO ’15). IEEE Computer Society, Washington, DC, USA, 213–224. http://dl.acm.org/citation.cfm?id=
2738600.2738627

[44] Cosmin Eugen Oancea, Ties Robroek, and Fabian Gieseke. 2020. Approximate Nearest-Neighbour Fields via Massively-
Parallel Propagation-Assisted K-D Trees. In 2020 IEEE International Conference on Big Data (Big Data). 5172–5181.
https://doi.org/10.1109/BigData50022.2020.9378426

[45] Cosmin E. Oancea, Jason W. A. Selby, Mark Giesbrecht, and Stephen M. Watt. 2005. Distributed Models of Thread-Level
Speculation. In Procs. of the Int. Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA
’05). 920–927.

[46] Cosmin E. Oancea and Stephen M. Watt. 2005. Parametric polymorphism for software component architectures. In
Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA ’05). Association for Computing Machinery, 147–166. https://doi.org/10.1145/1094811.1094823

, Vol. 1, No. 1, Article . Publication date: July 2025.

https://doi.org/10.1145/3460944.3464310
https://doi.org/10.1145/2627373.2627388
https://doi.org/10.1145/3293883.3295707
https://doi.org/10.1145/3453483.3454030
https://doi.org/10.1145/3166064
https://doi.org/10.1145/301104.301112
https://doi.org/10.1145/301104.301112
https://doi.org/10.1109/SC41404.2022.00036
https://doi.org/10.1145/3428234
https://doi.org/10.1145/2364474.2364484
https://doi.org/10.1007/978-3-540-89740-8_11
http://dl.acm.org/citation.cfm?id=2738600.2738627
http://dl.acm.org/citation.cfm?id=2738600.2738627
https://doi.org/10.1109/BigData50022.2020.9378426
https://doi.org/10.1145/1094811.1094823


Verifying Properties of Index Arrays in a Purely-Functional Data-Parallel Language 27

[47] Yunheung Paek, Jay Hoeflinger, and David Padua. 2002. Efficient and Precise Array Access Analysis. Trans. on Prog.
Lang. and Sys. (TOPLAS) 24(1) (2002), 65–109.

[48] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand, and Saman Amarasinghe.
2013. Halide: A Language and Compiler for Optimizing Parallelism, Locality, and Recomputation in Image Processing
Pipelines. In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design and Implementation
(Seattle, Washington, USA) (PLDI ’13). ACM, New York, NY, USA, 519–530. https://doi.org/10.1145/2491956.2462176

[49] Patrick M. Rondon, Ming Kawaguci, and Ranjit Jhala. [n. d.]. Liquid types. In Proceedings of the 29th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation (New York, NY, USA, 2008-06-07) (PLDI ’08). Association
for Computing Machinery, 159–169. https://doi.org/10.1145/1375581.1375602

[50] Silvius Rus, Lawrence Rauchwerger, and Jay Hoeflinger. 2002. Hybrid analysis: static & dynamic memory reference
analysis. In Proceedings of the 16th International Conference on Supercomputing (ICS ’02). Association for Computing
Machinery, 274–284. https://doi.org/10.1145/514191.514229

[51] Amr Sabry and Matthias Felleisen. 1992. Reasoning About Programs in Continuation-passing Style. SIGPLAN Lisp
Pointers V, 1 (Jan. 1992), 288–298.

[52] Robert Schenck, Ola Rønning, Troels Henriksen, and Cosmin E. Oancea. 2022. AD for an array language with nested
parallelism. In Proceedings of the International Conference on High Performance Computing, Networking, Storage and
Analysis (Dallas, Texas) (SC ’22). IEEE Press, Article 58, 15 pages. https://doi.org/10.1109/SC41404.2022.00063

[53] Dmitry Serykh, Stefan Oehmcke, Cosmin Oancea, Dainius Masiliūnas, Jan Verbesselt, Yan Cheng, Stéphanie Horion,
Fabian Gieseke, andNikolaj Hinnerskov. 2023. Seasonal-Trend Time Series Decomposition onGraphics Processing Units.
In IEEE International Conference on Big Data (BigData). 5914–5923. https://doi.org/10.1109/BigData59044.2023.10386208

[54] Wilfried Sieg and Barbara Kauffmann. 1993. Unification for quantified formulae. Carnegie Mellon [Department of
Philosophy].

[55] Michel Steuwer, Christian Fensch, Sam Lindley, and Christophe Dubach. 2015. Generating performance portable
code using rewrite rules: from high-level functional expressions to high-performance OpenCL code. In Proceedings
of the 20th ACM SIGPLAN International Conference on Functional Programming (ICFP 2015). ACM, 205–217. https:
//doi.org/10.1145/2784731.2784754

[56] M. Steuwer, T. Koehler, B. Köpcke, and F. Pizzuti. 2022. RISE & Shine: Language-Oriented Compiler Design.
arXiv:2201.03611 [cs.PL]

[57] Michelle Mills Strout and Paul D. Hovland. 2004. Metrics and models for reordering transformations. In Proceedings of
the 2004 Workshop on Memory System Performance (Washington, D.C.) (MSP ’04). Association for Computing Machinery,
New York, NY, USA, 23–34. https://doi.org/10.1145/1065895.1065899

[58] Nikhil Swamy, Cătălin Hriţcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-Lavaud, Simon Forest, Karthikeyan
Bhargavan, Cédric Fournet, Pierre-Yves Strub, Markulf Kohlweiss, et al. 2016. Dependent types and multi-monadic
effects in F. In Proceedings of the 43rd annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
256–270.

[59] Nikhil Swamy, Guido Martínez, and Aseem Rastogi. 2023. Proof-Oriented Programming in F.
[60] Kai Trojahner and Clemens Grelck. 2009. Dependently typed array programs don’t go wrong. The Journal of Logic and

Algebraic Programming 78, 7 (2009), 643–664. https://doi.org/10.1016/j.jlap.2009.03.002 The 19th Nordic Workshop on
Programming Theory (NWPT 2007).

[61] Lars B. van den Haak, Trevor L. McDonell, Gabriele K. Keller, and Ivo Gabe de Wolff. 2020. Accelerating Nested Data
Parallelism: Preserving Regularity. In Euro-Par 2020: Parallel Processing, Maciej Malawski and Krzysztof Rzadca (Eds.).
Springer International Publishing, Cham, 426–442.

[62] Lars B. van den Haak, Anton Wijs, Marieke Huisman, and Mark van den Brand. 2024. HaliVer: Deductive Verification
and Scheduling Languages Join Forces. In Tools and Algorithms for the Construction and Analysis of Systems, Bernd
Finkbeiner and Laura Kovács (Eds.). Springer Nature Switzerland, Cham, 71–89.

[63] Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon Peyton-Jones. 2014. Refinement types for
Haskell. SIGPLAN Not. 49, 9 (Aug. 2014), 269–282. https://doi.org/10.1145/2692915.2628161

[64] Niki Vazou, Anish Tondwalkar, Vikraman Choudhury, Ryan G. Scott, Ryan R. Newton, Philip Wadler, and Ranjit Jhala.
[n. d.]. Refinement reflection: complete verification with SMT. 2 ([n. d.]), 1–31. Issue POPL. https://doi.org/10.1145/
3158141

[65] Sven Verdoolaege, Juan Carlos Juega, Albert Cohen, José Ignacio Gómez, Christian Tenllado, and Francky Catthoor.
2013. Polyhedral Parallel Code Generation for CUDA. ACM Trans. Archit. Code Optim. 9, 4, Article 54 (Jan. 2013),
23 pages. https://doi.org/10.1145/2400682.2400713

[66] H PaulWilliams. 1986. Fourier’s Method of Linear Programming and its Dual. The American Mathematical Monthly 93, 9
(1986), 681–695. https://doi.org/10.1080/00029890.1986.11971923 arXiv:https://doi.org/10.1080/00029890.1986.11971923

[67] Hongwei Xi. 2007. Dependent ML An approach to practical programming with dependent types. Journal of Functional
Programming 17, 2 (2007), 215–286. https://doi.org/10.1017/S0956796806006216

, Vol. 1, No. 1, Article . Publication date: July 2025.

https://doi.org/10.1145/2491956.2462176
https://doi.org/10.1145/1375581.1375602
https://doi.org/10.1145/514191.514229
https://doi.org/10.1109/SC41404.2022.00063
https://doi.org/10.1109/BigData59044.2023.10386208
https://doi.org/10.1145/2784731.2784754
https://doi.org/10.1145/2784731.2784754
https://arxiv.org/abs/2201.03611
https://doi.org/10.1145/1065895.1065899
https://doi.org/10.1016/j.jlap.2009.03.002
https://doi.org/10.1145/2692915.2628161
https://doi.org/10.1145/3158141
https://doi.org/10.1145/3158141
https://doi.org/10.1145/2400682.2400713
https://doi.org/10.1080/00029890.1986.11971923
https://arxiv.org/abs/https://doi.org/10.1080/00029890.1986.11971923
https://doi.org/10.1017/S0956796806006216


28 Nikolaj Hey Hinnerskov, Robert Schenck, and Cosmin E. Oancea

[68] Hongwei Xi. 2017. Applied type system: An approach to practical programming with theorem-proving. arXiv preprint
arXiv:1703.08683 (2017).

[69] Hongwei Xi and Frank Pfenning. 1998. Eliminating array bound checking through dependent types. In Proceedings of
the ACM SIGPLAN 1998 Conference on Programming Language Design and Implementation (Montreal, Quebec, Canada)
(PLDI ’98). Association for Computing Machinery, New York, NY, USA, 249–257. https://doi.org/10.1145/277650.277732

[70] Alexandros Nikolaos Ziogas, Tal Ben-Nun, Guillermo Indalecio Fernández, Timo Schneider, Mathieu Luisier, and
Torsten Hoefler. 2019. A data-centric approach to extreme-scale ab initio dissipative quantum transport simulations.
In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (SC
’19). Association for Computing Machinery, Article 1, 13 pages. https://doi.org/10.1145/3295500.3357156

, Vol. 1, No. 1, Article . Publication date: July 2025.

https://doi.org/10.1145/277650.277732
https://doi.org/10.1145/3295500.3357156

	Abstract
	1 Introduction
	2 Languages, Array Properties and Bird's Eye View of Main Components
	2.1 The Source Language of the Analysis and Running Examples
	2.2 Index-Function Representation and Bird's Eye View of Architecture
	2.3 Array Properties

	3 Verifying Array Properties from their Index Function
	3.1 Rationale of the Design and Notation
	3.2 Verifying Injectivity and Bijectivity of Index Functions
	3.3 Inferring New Properties at a High Level

	4 Inferring Index Functions
	5 Solving Queries
	5.1 Query Solver Language Lowering and Symbol Tables
	5.2 Solving Inequalities
	5.3 Simplifying Index and Sum-of-Slice Expressions
	5.4 Exploiting Injective Properties with the Equality Solver

	6 Evaluation
	7 Related work
	8 Conclusions
	References

