
AUTOMAP:
Inferring Rank-Polymorphic Function Applications

with Integer Linear Programming

Robert Schenck 1, Nikolaj Hey Hinnerskov 1, Troels Henriksen 1,
Magnus Madsen 2, Martin Elsman 1

1DIKU
University of Copenhagen

Denmark

2Aarhus University
Denmark

August 27th, 2024

Context

This presentation is about Futhark, a functional array language.
Designed to study the compilation of (fast) array languages.

Space is function application: f xmeans f (x).

Functions are curried: f x y zmeans ((f x) y) z.

Hindley-Milner style static type system (it has parametric
polymorphism).

Example

def dotprod x y = sum (map (*) x y)

Context

This presentation is about Futhark, a functional array language.
Designed to study the compilation of (fast) array languages.

Space is function application: f xmeans f (x).

Functions are curried: f x y zmeans ((f x) y) z.

Hindley-Milner style static type system (it has parametric
polymorphism).

Example

def dotprod x y = sum (map (*) x y)

Context

This presentation is about Futhark, a functional array language.
Designed to study the compilation of (fast) array languages.

Space is function application: f xmeans f (x).

Functions are curried: f x y zmeans ((f x) y) z.

Hindley-Milner style static type system (it has parametric
polymorphism).

Example

def dotprod x y = sum (map (*) x y)

Context

This presentation is about Futhark, a functional array language.
Designed to study the compilation of (fast) array languages.

Space is function application: f xmeans f (x).

Functions are curried: f x y zmeans ((f x) y) z.

Hindley-Milner style static type system (it has parametric
polymorphism).

Example

def dotprod x y = sum (map (*) x y)

Context

This presentation is about Futhark, a functional array language.
Designed to study the compilation of (fast) array languages.

Space is function application: f xmeans f (x).

Functions are curried: f x y zmeans ((f x) y) z.

Hindley-Milner style static type system (it has parametric
polymorphism).

Example

def dotprod x y = sum (map (*) x y)

Rank polymorphism

1 + 2 => 3

[1,2,3] + [4,5,6] => [5,7,9]

[1,2,3] + 4 => [5,6,7]

sqrt [[1,4,9], [16,25,36]] => [[1,2,3], [4,5,6]]

Rank polymorphism

1 + 2 => 3

[1,2,3] + [4,5,6] => [5,7,9]

[1,2,3] + 4 => [5,6,7]

sqrt [[1,4,9], [16,25,36]] => [[1,2,3], [4,5,6]]

Rank polymorphism

1 + 2 => 3

[1,2,3] + [4,5,6] => [5,7,9]

[1,2,3] + 4 => [5,6,7]

sqrt [[1,4,9], [16,25,36]] => [[1,2,3], [4,5,6]]

Rank polymorphism

1 + 2 => 3

[1,2,3] + [4,5,6] => [5,7,9]

[1,2,3] + 4 => [5,6,7]

sqrt [[1,4,9], [16,25,36]] => [[1,2,3], [4,5,6]]

Rank polymorphism

Rank polymorphism

The ability to apply functions to arguments with different ranks than the
function expects.

Makes code easier to read and closer to math

map (+) [1,2,3] [4,5,6] vs. [1,2,3] + [4,5,6]

Practically all rank polymorphic languages are dynamic:
NumPy, APL, MATLAB, . . .

Rank polymorphism

Rank polymorphism

The ability to apply functions to arguments with different ranks than the
function expects.

Makes code easier to read and closer to math

map (+) [1,2,3] [4,5,6] vs. [1,2,3] + [4,5,6]

Practically all rank polymorphic languages are dynamic:
NumPy, APL, MATLAB, . . .

Rank polymorphism

Rank polymorphism

The ability to apply functions to arguments with different ranks than the
function expects.

Makes code easier to read and closer to math

map (+) [1,2,3] [4,5,6] vs. [1,2,3] + [4,5,6]

Practically all rank polymorphic languages are dynamic:
NumPy, APL, MATLAB, . . .

map and rep

map f xs applies f to each element of xs:

map f [x_0, x_1, ..., x_n] = [f x_0, f x_1, ..., f x_n]

You can map functions that take multiple arguments too:

map (+) [x_0, ..., x_n] [y_0, ..., y_n]
= [x_0 + y_0, ..., x_n + y_n]

rep xmakes an array of unspecified length whose elements are all x:

rep x = [x, x, ..., x]

▶ We’ll ignore the question of howmany elements are needed.

map and rep

map f xs applies f to each element of xs:

map f [x_0, x_1, ..., x_n] = [f x_0, f x_1, ..., f x_n]

You can map functions that take multiple arguments too:

map (+) [x_0, ..., x_n] [y_0, ..., y_n]
= [x_0 + y_0, ..., x_n + y_n]

rep xmakes an array of unspecified length whose elements are all x:

rep x = [x, x, ..., x]

▶ We’ll ignore the question of howmany elements are needed.

map and rep

map f xs applies f to each element of xs:

map f [x_0, x_1, ..., x_n] = [f x_0, f x_1, ..., f x_n]

You can map functions that take multiple arguments too:

map (+) [x_0, ..., x_n] [y_0, ..., y_n]
= [x_0 + y_0, ..., x_n + y_n]

rep xmakes an array of unspecified length whose elements are all x:

rep x = [x, x, ..., x]

▶ We’ll ignore the question of howmany elements are needed.

An example

[[1,2],[3,4]] + 1

elaborates to

[[1,2],[3,4]] + rep (rep 1)

which further elaborates to

map (map (+)) [[1,2],[3,4]]
(rep (rep 1))

xss : [][]int
f: []int -> [][]int -> int
f xss xss

Elaborating the first application:

(map f xss)

Elaborating the second application:

(map f xss) (rep xss)

because

(map f xss) : [][][]int -> []int

reps can often be eliminated

map (\xs -> f xs xss) xss

An example

[[1,2],[3,4]] + 1

elaborates to

[[1,2],[3,4]] + rep (rep 1)

which further elaborates to

map (map (+)) [[1,2],[3,4]]
(rep (rep 1))

xss : [][]int
f: []int -> [][]int -> int
f xss xss

Elaborating the first application:

(map f xss)

Elaborating the second application:

(map f xss) (rep xss)

because

(map f xss) : [][][]int -> []int

reps can often be eliminated

map (\xs -> f xs xss) xss

An example

[[1,2],[3,4]] + 1

elaborates to

[[1,2],[3,4]] + rep (rep 1)

which further elaborates to

map (map (+)) [[1,2],[3,4]]
(rep (rep 1))

xss : [][]int
f: []int -> [][]int -> int
f xss xss

Elaborating the first application:

(map f xss)

Elaborating the second application:

(map f xss) (rep xss)

because

(map f xss) : [][][]int -> []int

reps can often be eliminated

map (\xs -> f xs xss) xss

An example

[[1,2],[3,4]] + 1

elaborates to

[[1,2],[3,4]] + rep (rep 1)

which further elaborates to

map (map (+)) [[1,2],[3,4]]
(rep (rep 1))

xss : [][]int
f: []int -> [][]int -> int
f xss xss

Elaborating the first application:

(map f xss)

Elaborating the second application:

(map f xss) (rep xss)

because

(map f xss) : [][][]int -> []int

reps can often be eliminated

map (\xs -> f xs xss) xss

An example

[[1,2],[3,4]] + 1

elaborates to

[[1,2],[3,4]] + rep (rep 1)

which further elaborates to

map (map (+)) [[1,2],[3,4]]
(rep (rep 1))

xss : [][]int
f: []int -> [][]int -> int
f xss xss

Elaborating the first application:

(map f xss)

Elaborating the second application:

(map f xss) (rep xss)

because

(map f xss) : [][][]int -> []int

reps can often be eliminated

map (\xs -> f xs xss) xss

An example

[[1,2],[3,4]] + 1

elaborates to

[[1,2],[3,4]] + rep (rep 1)

which further elaborates to

map (map (+)) [[1,2],[3,4]]
(rep (rep 1))

xss : [][]int
f: []int -> [][]int -> int
f xss xss

Elaborating the first application:

(map f xss)

Elaborating the second application:

(map f xss) (rep xss)

because

(map f xss) : [][][]int -> []int

reps can often be eliminated

map (\xs -> f xs xss) xss

An example

[[1,2],[3,4]] + 1

elaborates to

[[1,2],[3,4]] + rep (rep 1)

which further elaborates to

map (map (+)) [[1,2],[3,4]]
(rep (rep 1))

xss : [][]int
f: []int -> [][]int -> int
f xss xss

Elaborating the first application:

(map f xss)

Elaborating the second application:

(map f xss) (rep xss)

because

(map f xss) : [][][]int -> []int

reps can often be eliminated

map (\xs -> f xs xss) xss

Goal
For each function application, the compiler should automatically insert
maps or reps to make the application rank-correct.

f x =⇒

map (... (map f) ...) x

or
f (rep ... (rep x))

Challenge: ambiguity

Consider

sum: []int -> int
length : []a -> int
xss : [][]int

sum (length xss)

Many rank-correct elaborations:
1. sum (rep (length xss))

2. sum (map length xss)

3. map sum (map (map length) (rep xss))

4. ...

Challenge: ambiguity

Consider

sum: []int -> int
length : []a -> int
xss : [][]int

sum (length xss)

Many rank-correct elaborations:
1. sum (rep (length xss))

2. sum (map length xss)

3. map sum (map (map length) (rep xss))

4. ...

Challenge: ambiguity

Consider

sum: []int -> int
length : []a -> int
xss : [][]int

sum (length xss)

Many rank-correct elaborations:
1. sum (rep (length xss))

2. sum (map length xss)

3. map sum (map (map length) (rep xss))

4. ...

Challenge: ambiguity

Consider

sum: []int -> int
length : []a -> int
xss : [][]int

sum (length xss)

Many rank-correct elaborations:
1. sum (rep (length xss))

2. sum (map length xss)

3. map sum (map (map length) (rep xss))

4. ...

The Strategy

Rule 1
An application can be mapped or repped (or neither) but never both.

OK:
▶ map f x
▶ g (rep (rep x))
▶ (map (map h) x) (rep y)

BAD:
▶ map f (rep x)
▶ (map (map g)) (rep x)

Never necessary to map and rep in the same application to obtain a
rank-correct program.

The Strategy

Rule 1
An application can be mapped or repped (or neither) but never both.

OK:
▶ map f x

▶ g (rep (rep x))
▶ (map (map h) x) (rep y)

BAD:
▶ map f (rep x)
▶ (map (map g)) (rep x)

Never necessary to map and rep in the same application to obtain a
rank-correct program.

The Strategy

Rule 1
An application can be mapped or repped (or neither) but never both.

OK:
▶ map f x
▶ g (rep (rep x))

▶ (map (map h) x) (rep y)

BAD:
▶ map f (rep x)
▶ (map (map g)) (rep x)

Never necessary to map and rep in the same application to obtain a
rank-correct program.

The Strategy

Rule 1
An application can be mapped or repped (or neither) but never both.

OK:
▶ map f x
▶ g (rep (rep x))
▶ (map (map h) x) (rep y)

BAD:
▶ map f (rep x)
▶ (map (map g)) (rep x)

Never necessary to map and rep in the same application to obtain a
rank-correct program.

The Strategy

Rule 1
An application can be mapped or repped (or neither) but never both.

OK:
▶ map f x
▶ g (rep (rep x))
▶ (map (map h) x) (rep y)

BAD:
▶ map f (rep x)

▶ (map (map g)) (rep x)

Never necessary to map and rep in the same application to obtain a
rank-correct program.

The Strategy

Rule 1
An application can be mapped or repped (or neither) but never both.

OK:
▶ map f x
▶ g (rep (rep x))
▶ (map (map h) x) (rep y)

BAD:
▶ map f (rep x)
▶ (map (map g)) (rep x)

Never necessary to map and rep in the same application to obtain a
rank-correct program.

The Strategy

Rule 1
An application can be mapped or repped (or neither) but never both.

OK:
▶ map f x
▶ g (rep (rep x))
▶ (map (map h) x) (rep y)

BAD:
▶ map f (rep x)
▶ (map (map g)) (rep x)

Never necessary to map and rep in the same application to obtain a
rank-correct program.

The Strategy

Rule 2
Minimize the number of inserted maps and reps.

Generally aligns with programmer’s intent/simple mental model.

Minimization over all the applications of a top-level definition:
▶ Only have to choose from the set of minimal solutions.

sum (length xss) can be elaborated to:
1. sum (rep (length xss))
2. sum (map length xss)

The Strategy

Rule 2
Minimize the number of inserted maps and reps.

Generally aligns with programmer’s intent/simple mental model.

Minimization over all the applications of a top-level definition:
▶ Only have to choose from the set of minimal solutions.

sum (length xss) can be elaborated to:
1. sum (rep (length xss))
2. sum (map length xss)

The Strategy

Rule 2
Minimize the number of inserted maps and reps.

Generally aligns with programmer’s intent/simple mental model.

Minimization over all the applications of a top-level definition:
▶ Only have to choose from the set of minimal solutions.

sum (length xss) can be elaborated to:
1. sum (rep (length xss))
2. sum (map length xss)

Challenge: elaboration is global

sum (map length xss) is a global minimal elaboration of
sum (length xss).
▶ Inserting the map for the inner length application requires considering

the outer sum.

To find all minimal elaborations, must consider all applications
simultaneously.

Challenge: elaboration is global

sum (map length xss) is a global minimal elaboration of
sum (length xss).
▶ Inserting the map for the inner length application requires considering

the outer sum.

To find all minimal elaborations, must consider all applications
simultaneously.

Challenge: elaboration is global

sum (map length xss) is a global minimal elaboration of
sum (length xss).
▶ Inserting the map for the inner length application requires considering

the outer sum.

To find all minimal elaborations, must consider all applications
simultaneously.

Challenge: type variables

Futhark has parametric polymorphism:

id : a -> a
length : []a -> int

A type variable can have any rank!

How do we statically insert maps and reps in the presence of type
variables, whose ranks aren’t known?

Challenge: type variables

Futhark has parametric polymorphism:

id : a -> a
length : []a -> int

A type variable can have any rank!

How do we statically insert maps and reps in the presence of type
variables, whose ranks aren’t known?

Challenge: type variables

Futhark has parametric polymorphism:

id : a -> a
length : []a -> int

A type variable can have any rank!

How do we statically insert maps and reps in the presence of type
variables, whose ranks aren’t known?

Constraints

Suppose

f : p -> b
x : a

The application f x has constraint

p = a

We only care about rank, so relax to

|p| = |a|

where |p| is the rank of p.
For example: |[][]int| = 2 and |int| = 0.

Constraints

Suppose

f : p -> b
x : a

The application f x has constraint

p = a

We only care about rank, so relax to

|p| = |a|

where |p| is the rank of p.
For example: |[][]int| = 2 and |int| = 0.

Constraints

Suppose

f : p -> b
x : a

The application f x has constraint

p = a

We only care about rank, so relax to

|p| = |a|

where |p| is the rank of p.

For example: |[][]int| = 2 and |int| = 0.

Constraints

Suppose

f : p -> b
x : a

The application f x has constraint

p = a

We only care about rank, so relax to

|p| = |a|

where |p| is the rank of p.
For example: |[][]int| = 2 and |int| = 0.

Constraints

Rank polymorphisms means rank differences are allowed.

Case |p| < |a|:
▶ Introduce a rank variableM to account for the difference:

M+ |p| = |a|

▶ Example:

sqrt : int -> int
[1,2,3] : []int

Application sqrt [1,2,3] gives the constraint

M+ |int|︸ ︷︷ ︸
0

= |[]int|︸ ︷︷ ︸
1

=⇒ M = 1

M is equal to the number of maps required: map sqrt [1,2,3]

Constraints

Rank polymorphisms means rank differences are allowed.
Case |p| < |a|:
▶ Introduce a rank variableM to account for the difference:

M+ |p| = |a|

▶ Example:

sqrt : int -> int
[1,2,3] : []int

Application sqrt [1,2,3] gives the constraint

M+ |int|︸ ︷︷ ︸
0

= |[]int|︸ ︷︷ ︸
1

=⇒ M = 1

M is equal to the number of maps required: map sqrt [1,2,3]

Constraints

Rank polymorphisms means rank differences are allowed.
Case |p| < |a|:
▶ Introduce a rank variableM to account for the difference:

M+ |p| = |a|

▶ Example:

sqrt : int -> int
[1,2,3] : []int

Application sqrt [1,2,3] gives the constraint

M+ |int|︸ ︷︷ ︸
0

= |[]int|︸ ︷︷ ︸
1

=⇒ M = 1

M is equal to the number of maps required: map sqrt [1,2,3]

Constraints

Case |p| > |a|:
▶ Introduce a rank variable R to account for the difference:

|p| = R+ |a|

▶ Example: length : []a -> int The application length 3 gives the
constraint

|[] a| = R+ |int|
1+ |a| = R =⇒ R = 1,2,3 . . .

R is equal to the number of reps required:
▶ length (rep 3)
▶ length (rep (rep 3))
▶ . . .

Constraints

Case |p| > |a|:
▶ Introduce a rank variable R to account for the difference:

|p| = R+ |a|

▶ Example: length : []a -> int The application length 3 gives the
constraint

|[] a| = R+ |int|
1+ |a| = R =⇒ R = 1,2,3 . . .

R is equal to the number of reps required:
▶ length (rep 3)
▶ length (rep (rep 3))
▶ . . .

Constraints

Case |p| > |a|:
▶ Introduce a rank variable R to account for the difference:

|p| = R+ |a|

▶ Example: length : []a -> int The application length 3 gives the
constraint

|[] a| = R+ |int|
1+ |a| = R =⇒ R = 1,2,3 . . .

R is equal to the number of reps required:
▶ length (rep 3)
▶ length (rep (rep 3))
▶ . . .

Constraints

Each application of a function f : p -> c to an argument x : a
generates a constraint

M+ |p| = R+ |a|

Rule 1: can either map or rep but not both

M = 0 or R = 0

Constraints

Each application of a function f : p -> c to an argument x : a
generates a constraint

M+ |p| = R+ |a|

Rule 1: can either map or rep but not both

M = 0 or R = 0

Constraints

Collect the constraints for each function application.

Example: sum (length xss)

minimize
M1 + R1 +M2 + R2

subject to

M1 + 1+ |a| = R1 + 2
M1 = 0 or R1 = 0

}
length

M2 + 1 = R2 +M1
M2 = 0 or R2 = 0

}
sum

Rule 2: Minimize the number of maps and reps
The or-constraints can be linearized to obtain an Integer Linear
Program (ILP).

Constraints

Collect the constraints for each function application.
Example: sum (length xss)

minimize
M1 + R1 +M2 + R2

subject to

M1 + 1+ |a| = R1 + 2
M1 = 0 or R1 = 0

}
length

M2 + 1 = R2 +M1
M2 = 0 or R2 = 0

}
sum

Rule 2: Minimize the number of maps and reps
The or-constraints can be linearized to obtain an Integer Linear
Program (ILP).

Constraints

Collect the constraints for each function application.
Example: sum (length xss)

minimize
M1 + R1 +M2 + R2

subject to

M1 + 1+ |a| = R1 + 2
M1 = 0 or R1 = 0

}
length

M2 + 1 = R2 +M1
M2 = 0 or R2 = 0

}
sum

Rule 2: Minimize the number of maps and reps
The or-constraints can be linearized to obtain an Integer Linear
Program (ILP).

Constraints

Collect the constraints for each function application.
Example: sum (length xss)

minimize
M1 + R1 +M2 + R2

subject to

M1 + 1+ |a| = R1 + 2
M1 = 0 or R1 = 0

}
length

M2 + 1 = R2 +M1
M2 = 0 or R2 = 0

}
sum

Rule 2: Minimize the number of maps and reps

The or-constraints can be linearized to obtain an Integer Linear
Program (ILP).

Constraints

Collect the constraints for each function application.
Example: sum (length xss)

minimize
M1 + R1 +M2 + R2

subject to
M1 + 1+ |a| = R1 + 2
M1 = 0 or R1 = 0

}
length

M2 + 1 = R2 +M1
M2 = 0 or R2 = 0

}
sum

Rule 2: Minimize the number of maps and reps

The or-constraints can be linearized to obtain an Integer Linear
Program (ILP).

Constraints

Collect the constraints for each function application.
Example: sum (length xss)

minimize
M1 + R1 +M2 + R2

subject to
M1 + 1+ |a| = R1 + 2
M1 = 0 or R1 = 0

}
length

M2 + 1 = R2 +M1
M2 = 0 or R2 = 0

}
sum

Rule 2: Minimize the number of maps and reps
The or-constraints can be linearized to obtain an Integer Linear
Program (ILP).

Automap TL;DR

1. For each application generate rank equality and Rule 1 constraint.

2. Transform constraint set into an ILP and solve.

3. Use ILP solution to elaborate. E.g., if the i-th application f x has
Mi = 3 and Ri = 0:

f x =⇒ map (map (map f)) x

4. Type check elaborated program and continue with compilation.

Automap TL;DR

1. For each application generate rank equality and Rule 1 constraint.

2. Transform constraint set into an ILP and solve.

3. Use ILP solution to elaborate. E.g., if the i-th application f x has
Mi = 3 and Ri = 0:

f x =⇒ map (map (map f)) x

4. Type check elaborated program and continue with compilation.

Automap TL;DR

1. For each application generate rank equality and Rule 1 constraint.

2. Transform constraint set into an ILP and solve.

3. Use ILP solution to elaborate. E.g., if the i-th application f x has
Mi = 3 and Ri = 0:

f x =⇒ map (map (map f)) x

4. Type check elaborated program and continue with compilation.

Automap TL;DR

1. For each application generate rank equality and Rule 1 constraint.

2. Transform constraint set into an ILP and solve.

3. Use ILP solution to elaborate. E.g., if the i-th application f x has
Mi = 3 and Ri = 0:

f x =⇒ map (map (map f)) x

4. Type check elaborated program and continue with compilation.

Formalization

Grammar

We formalized Automap for a simple array language based on a
small subset of Futhark.

v ::= n (n ∈ Z)
| λx.e
| [v, . . . , v]
| rep v

p ::= def f x = e ; p
| e

e ::= v
| x (x ∈ Vp)
| [e, . . . ,e]
| map e e
| rep e
|

The application e e△ (M,R) is a flexible function application.

Grammar

We formalized Automap for a simple array language based on a
small subset of Futhark.

v ::= n (n ∈ Z)
| λx.e
| [v, . . . , v]
| rep v

p ::= def f x = e ; p
| e

e ::= v
| x (x ∈ Vp)
| [e, . . . ,e]
| map e e
| rep e
|

The application e e△ (M,R) is a flexible function application.

Grammar

We formalized Automap for a simple array language based on a
small subset of Futhark.

v ::= n (n ∈ Z)
| λx.e
| [v, . . . , v]
| rep v

p ::= def f x = e ; p
| e

e ::= v
| x (x ∈ Vp)
| [e, . . . ,e]
| map e e
| rep e
| e e△ (M,R)

The application e e△ (M,R) is a flexible function application.

Grammar

We formalized Automap for a simple array language based on a
small subset of Futhark.

v ::= n (n ∈ Z)
| λx.e
| [v, . . . , v]
| rep v

p ::= def f x = e ; p
| e

e ::= v
| x (x ∈ Vp)
| [e, . . . ,e]
| map e e
| rep e
| e e△ (M,R)

The application e e△ (M,R) is a flexible function application.

Grammar

We formalized Automap for a simple array language based on a
small subset of Futhark.

v ::= n (n ∈ Z)
| λx.e
| [v, . . . , v]
| rep v

p ::= def f x = e ; p
| e

e ::= v
| x (x ∈ Vp)
| [e, . . . ,e]
| map e e
| rep e
| e e△ (M,R)

The application e e△ (M,R) is a flexible function application.

Flexible function applications

During constraint generation, all function applications f x are
annotated with rank variables:

f x −→ f x △ (M,R)

f x △ (M,R)will ultimately be elaborated to

mapsr(M) f (repsr(R) x)

where sr is the solution to the ILP and

map0 e = e rep0 e = e

mapn+1 e = map (mapn e) repn+1 e = rep (repn e)

Flexible function applications

During constraint generation, all function applications f x are
annotated with rank variables:

f x −→ f x △ (M,R)

f x △ (M,R)will ultimately be elaborated to

mapsr(M) f (repsr(R) x)

where sr is the solution to the ILP and

map0 e = e rep0 e = e

mapn+1 e = map (mapn e) repn+1 e = rep (repn e)

Languages

The formalization is split up into three languages:

Source lang.

Internal lang. Target lang.

Implicit maps/reps ✓

✓ ✗

Explicit maps/reps ✓

✓ ✓

△ (M,R) annots. ✗

✓ ✗

Example sqrt [1,2,3]

sqrt [1,2,3]△ (M,R) map sqrt [1,2,3]

Source type checking−−−−−−−−−→ Internal elaboration−−−−−−−→ Target

Languages

The formalization is split up into three languages:

Source lang. Internal lang.

Target lang.

Implicit maps/reps ✓ ✓

✗

Explicit maps/reps ✓ ✓

✓

△ (M,R) annots. ✗ ✓

✗

Example sqrt [1,2,3] sqrt [1,2,3]△ (M,R)

map sqrt [1,2,3]

Source type checking−−−−−−−−−→ Internal elaboration−−−−−−−→ Target

Languages

The formalization is split up into three languages:

Source lang. Internal lang. Target lang.
Implicit maps/reps ✓ ✓ ✗

Explicit maps/reps ✓ ✓ ✓
△ (M,R) annots. ✗ ✓ ✗

Example sqrt [1,2,3] sqrt [1,2,3]△ (M,R) map sqrt [1,2,3]

Source type checking−−−−−−−−−→ Internal elaboration−−−−−−−→ Target

Languages

The formalization is split up into three languages:

Source lang. Internal lang. Target lang.
Implicit maps/reps ✓ ✓ ✗

Explicit maps/reps ✓ ✓ ✓
△ (M,R) annots. ✗ ✓ ✗

Example sqrt [1,2,3] sqrt [1,2,3]△ (M,R) map sqrt [1,2,3]

Source type checking−−−−−−−−−→ Internal elaboration−−−−−−−→ Target

Type checking

Constraint-based type system; judgements of the form

Γ ⊢ e :S σ ∥ C

Under environment Γ, e has scheme σ with frame Swhen the
constraints in C are satisfied.

▶ Frames syntactically seperate leading dimensions that are the result of
maps.

▶ In general, can think of e as having the type S σ.
▶ Example:

Γ ⊢ sqrt [1,2,3] :[]M int ∥ {[]Mint ?
= []int}

▶ Frames are needed for proofs, improved ambiguity checking, and
implementation optimizations.

Type checking

Constraint-based type system; judgements of the form

Γ ⊢ e :S σ ∥ C

Under environment Γ, e has scheme σ with frame Swhen the
constraints in C are satisfied.
▶ Frames syntactically seperate leading dimensions that are the result of

maps.
▶ In general, can think of e as having the type S σ.

▶ Example:

Γ ⊢ sqrt [1,2,3] :[]M int ∥ {[]Mint ?
= []int}

▶ Frames are needed for proofs, improved ambiguity checking, and
implementation optimizations.

Type checking

Constraint-based type system; judgements of the form

Γ ⊢ e :S σ ∥ C

Under environment Γ, e has scheme σ with frame Swhen the
constraints in C are satisfied.
▶ Frames syntactically seperate leading dimensions that are the result of

maps.
▶ In general, can think of e as having the type S σ.
▶ Example:

Γ ⊢ sqrt [1,2,3] :[]M int ∥ {[]Mint ?
= []int}

▶ Frames are needed for proofs, improved ambiguity checking, and
implementation optimizations.

Type checking

Constraint-based type system; judgements of the form

Γ ⊢ e :S σ ∥ C

Under environment Γ, e has scheme σ with frame Swhen the
constraints in C are satisfied.
▶ Frames syntactically seperate leading dimensions that are the result of

maps.
▶ In general, can think of e as having the type S σ.
▶ Example:

Γ ⊢ sqrt [1,2,3] :[]M int ∥ {[]Mint ?
= []int}

▶ Frames are needed for proofs, improved ambiguity checking, and
implementation optimizations.

Type checking rules - C-App

The C-App rule types flexible function applications.

Γ ⊢ e1 :S1 τ1 → τ2 ∥ C1 Γ ⊢ e2 :S2 τ3 ∥ C2

M,R fresh C = {M ∨· R, []M S1 τ1
?
= []R S2 τ3}

Γ ⊢ e1 e2 △ (M,R) :
[]MS1

τ2 ∥ C ∪ C1 ∪ C2

C-App

The generated constraints are relaxed to rank constraints, which are
used to form the ILP:

[]M S1 τ1
?
= []R S2 τ3 −→M+ |S1|+ |τ1|

?
= R+ |S2|+ |τ3|

Type checking rules - C-App

The C-App rule types flexible function applications.

Γ ⊢ e1 :S1 τ1 → τ2 ∥ C1 Γ ⊢ e2 :S2 τ3 ∥ C2

M,R fresh C = {M ∨· R, []M S1 τ1
?
= []R S2 τ3}

Γ ⊢ e1 e2 △ (M,R) :
[]MS1

τ2 ∥ C ∪ C1 ∪ C2

C-App

The generated constraints are relaxed to rank constraints, which are
used to form the ILP:

[]M S1 τ1
?
= []R S2 τ3 −→M+ |S1|+ |τ1|

?
= R+ |S2|+ |τ3|

Type checking rules - C-App

The C-App rule types flexible function applications.

Γ ⊢ e1 :S1 τ1 → τ2 ∥ C1 Γ ⊢ e2 :S2 τ3 ∥ C2

M,R fresh C = {M ∨· R, []M S1 τ1
?
= []R S2 τ3}

Γ ⊢ e1 e2 △ (M,R) :
[]MS1

τ2 ∥ C ∪ C1 ∪ C2
C-App

The generated constraints are relaxed to rank constraints, which are
used to form the ILP:

[]M S1 τ1
?
= []R S2 τ3 −→M+ |S1|+ |τ1|

?
= R+ |S2|+ |τ3|

Type checking rules - C-App

The C-App rule types flexible function applications.

Γ ⊢ e1 :S1 τ1 → τ2 ∥ C1 Γ ⊢ e2 :S2 τ3 ∥ C2

M,R fresh C = {M ∨· R, []M S1 τ1
?
= []R S2 τ3}

Γ ⊢ e1 e2 △ (M,R) :
[]MS1

τ2 ∥ C ∪ C1 ∪ C2
C-App

The generated constraints are relaxed to rank constraints, which are
used to form the ILP:

[]M S1 τ1
?
= []R S2 τ3 −→M+ |S1|+ |τ1|

?
= R+ |S2|+ |τ3|

Type checking rules - C-Def

The C-Def rule types top-level polymorphic definitions and
dispatches the constraint set for each top-level definition

Γ, x : τ ⊢ e : τ ′ ∥ C s satisfies C {α⃗} ∩ ftv(s(Γ), σ) = ∅
s(Γ), f : ∀α⃗.s(τ)→ s(τ ′) ⊢ p : σ

s(Γ) ⊢ def f x = s(e) ; p : σ
C-Def

Key idea: find a satisfying substitution for the constraint set C and
apply it.
▶ Instantiates all rank variables with integral ranks:

s(sqrt [1,2,3]△ (M,R)) −→ sqrt [1,2,3]△ (1,0)

▶ s also substitutes type variables.

Type checking rules - C-Def

The C-Def rule types top-level polymorphic definitions and
dispatches the constraint set for each top-level definition

Γ, x : τ ⊢ e : τ ′ ∥ C s satisfies C {α⃗} ∩ ftv(s(Γ), σ) = ∅
s(Γ), f : ∀α⃗.s(τ)→ s(τ ′) ⊢ p : σ

s(Γ) ⊢ def f x = s(e) ; p : σ
C-Def

Key idea: find a satisfying substitution for the constraint set C and
apply it.

▶ Instantiates all rank variables with integral ranks:

s(sqrt [1,2,3]△ (M,R)) −→ sqrt [1,2,3]△ (1,0)

▶ s also substitutes type variables.

Type checking rules - C-Def

The C-Def rule types top-level polymorphic definitions and
dispatches the constraint set for each top-level definition

Γ, x : τ ⊢ e : τ ′ ∥ C s satisfies C {α⃗} ∩ ftv(s(Γ), σ) = ∅
s(Γ), f : ∀α⃗.s(τ)→ s(τ ′) ⊢ p : σ

s(Γ) ⊢ def f x = s(e) ; p : σ
C-Def

Key idea: find a satisfying substitution for the constraint set C and
apply it.
▶ Instantiates all rank variables with integral ranks:

s(sqrt [1,2,3]△ (M,R)) −→ sqrt [1,2,3]△ (1,0)

▶ s also substitutes type variables.

Type checking rules - C-Def

The C-Def rule types top-level polymorphic definitions and
dispatches the constraint set for each top-level definition

Γ, x : τ ⊢ e : τ ′ ∥ C s satisfies C {α⃗} ∩ ftv(s(Γ), σ) = ∅
s(Γ), f : ∀α⃗.s(τ)→ s(τ ′) ⊢ p : σ

s(Γ) ⊢ def f x = s(e) ; p : σ
C-Def

Key idea: find a satisfying substitution for the constraint set C and
apply it.
▶ Instantiates all rank variables with integral ranks:

s(sqrt [1,2,3]△ (M,R)) −→ sqrt [1,2,3]△ (1,0)

▶ s also substitutes type variables.

Solve: Constraint set solving algorithm

input : A constraint set C.
output: A satisfying substitution s.

1 |C| ← construct the associated rank constraint set from C;
2 I← construct the corresponding ILP from |C|;
3 sr ← solve I using an ILP solver;
4 if sr then
5 I′ ← add constraints to I to ban solution sr and enforce same size;
6 s′r ← solve I′;
7 if s′r then
8 return ⊥; // |C| is ambiguous; fail
9 else
10 return Unify(sr(C)) ◦ sr
11 else
12 return ⊥

Solve: Constraint set solving algorithm

input : A constraint set C.
output: A satisfying substitution s.

1 |C| ← construct the associated rank constraint set from C;

2 []M S1 τ1
?
= []R S2 τ3 −→M+ |S1|+ |τ1|

?
= R+ |S2|+ |τ3|;

3 sr ← solve I using an ILP solver;
4 if sr then
5 I′ ← add constraints to I to ban solution sr and enforce same size;
6 s′r ← solve I′;
7 if s′r then
8 return ⊥; // |C| is ambiguous; fail
9 else
10 return Unify(sr(C)) ◦ sr
11 else
12 return ⊥

Solve: Constraint set solving algorithm

input : A constraint set C.
output: A satisfying substitution s.

1 |C| ← construct the associated rank constraint set from C;
2 I← construct the corresponding ILP from |C|;
3 sr ← solve I using an ILP solver;
4 if sr then
5 I′ ← add constraints to I to ban solution sr and enforce same size;
6 s′r ← solve I′;
7 if s′r then
8 return ⊥; // |C| is ambiguous; fail
9 else
10 return Unify(sr(C)) ◦ sr
11 else
12 return ⊥

Solve: Constraint set solving algorithm

input : A constraint set C.
output: A satisfying substitution s.

1 |C| ← construct the associated rank constraint set from C;
2 I← construct the corresponding ILP from |C|;
3 sr ← solve I using an ILP solver;
4 if sr then
5 I′ ← add constraints to I to ban solution sr and enforce same size;
6 s′r ← solve I′;
7 if s′r then
8 return ⊥; // |C| is ambiguous; fail
9 else
10 return Unify(sr(C)) ◦ sr
11 else
12 return ⊥

Solve: Constraint set solving algorithm

input : A constraint set C.
output: A satisfying substitution s.

1 |C| ← construct the associated rank constraint set from C;
2 I← construct the corresponding ILP from |C|;
3 sr ← solve I using an ILP solver;
4 if sr then
5 I′ ← add constraints to I to ban solution sr and enforce same size;
6 s′r ← solve I′;
7 if s′r then
8 return ⊥; // |C| is ambiguous; fail
9 else
10 return Unify(sr(C)) ◦ sr
11 else
12 return ⊥

Solve: Constraint set solving algorithm

input : A constraint set C.
output: A satisfying substitution s.

1 |C| ← construct the associated rank constraint set from C;
2 I← construct the corresponding ILP from |C|;
3 sr ← solve I using an ILP solver;
4 if sr then
5 I′ ← add constraints to I to ban solution sr and enforce same size;
6 s′r ← solve I′;
7 if s′r then
8 return ⊥; // |C| is ambiguous; fail
9 else
10 return Unify(sr(C)) ◦ sr
11 else
12 return ⊥

Solve: Constraint set solving algorithm

input : A constraint set C.
output: A satisfying substitution s.

1 |C| ← construct the associated rank constraint set from C;
2 I← construct the corresponding ILP from |C|;
3 sr ← solve I using an ILP solver;
4 if sr then
5 I′ ← add constraints to I to ban solution sr and enforce same size;
6 s′r ← solve I′;
7 if s′r then
8 return ⊥; // |C| is ambiguous; fail
9 else
10 return Unify(sr(C)) ◦ sr
11 else
12 return ⊥

Solve: Constraint set solving algorithm

input : A constraint set C.
output: A satisfying substitution s.

1 |C| ← construct the associated rank constraint set from C;
2 I← construct the corresponding ILP from |C|;
3 sr ← solve I using an ILP solver;
4 if sr then
5 I′ ← add constraints to I to ban solution sr and enforce same size;
6 s′r ← solve I′;
7 if s′r then
8 return ⊥; // |C| is ambiguous; fail
9 else
10 return Unify(sr(C)) ◦ sr
11 else
12 return ⊥

Solve: Constraint set solving algorithm

input : A constraint set C.
output: A satisfying substitution s.

1 |C| ← construct the associated rank constraint set from C;
2 I← construct the corresponding ILP from |C|;
3 sr ← solve I using an ILP solver;
4 if sr then
5 I′ ← add constraints to I to ban solution sr and enforce same size;
6 s′r ← solve I′;
7 if s′r then
8 return ⊥; // |C| is ambiguous; fail

9 else
10 return Unify(sr(C)) ◦ sr
11 else
12 return ⊥

Solve: Constraint set solving algorithm

input : A constraint set C.
output: A satisfying substitution s.

1 |C| ← construct the associated rank constraint set from C;
2 I← construct the corresponding ILP from |C|;
3 sr ← solve I using an ILP solver;
4 if sr then
5 I′ ← add constraints to I to ban solution sr and enforce same size;
6 s′r ← solve I′;
7 if s′r then
8 return ⊥; // |C| is ambiguous; fail
9 else
10 return Unify(sr(C)) ◦ sr
11 else
12 return ⊥

Solve: Constraint set solving algorithm

input : A constraint set C.
output: A satisfying substitution s.

1 |C| ← construct the associated rank constraint set from C;
2 I← construct the corresponding ILP from |C|;
3 sr ← solve I using an ILP solver;
4 if sr then
5 I′ ← add constraints to I to ban solution sr and enforce same size;
6 s′r ← solve I′;
7 if s′r then
8 return ⊥; // |C| is ambiguous; fail
9 else
10 return Unify(sr(C)) ◦ sr
11 else
12 return ⊥

Properties of Solve

All satisfiers s can be decomposed into a type and rank substitution:

Proposition

If s satisfies C, there exists a rank substitution sr that satisfies |C| and
there exists a closed type substitution st such that s|ftv(C)∪frv(C) = st ◦ sr.

You can always build a satisfier st ◦ sr of C from a satisfier sr of |C|:

Proposition

If C is satisfiable and sr satisfies |C| then there is a closed type
substitution st such that the substitution s = st ◦ sr satisfies C.

Properties of Solve

All satisfiers s can be decomposed into a type and rank substitution:

Proposition

If s satisfies C, there exists a rank substitution sr that satisfies |C| and
there exists a closed type substitution st such that s|ftv(C)∪frv(C) = st ◦ sr.

You can always build a satisfier st ◦ sr of C from a satisfier sr of |C|:

Proposition

If C is satisfiable and sr satisfies |C| then there is a closed type
substitution st such that the substitution s = st ◦ sr satisfies C.

Elaboration
Reminder: a satisfying substitution s for a constraint set C (which
Solve gives us) instantiates all rank variables with integral ranks:

s(sqrt [1,2,3]△ (M,R)) −→ sqrt [1,2,3]△ (1,0)

How do we then transform such an expression into one with explicit
maps and reps?

sqrt [1,2,3]△ (1,0) −→ map sqrt [1,2,3]

The AM transformation converts from the internal language to the
target language:

AM([e1, . . . ,em]) = [AM(e1), . . . ,AM(em)]
AM(def f x = e ; p) = def f x = AM(e) ; AM(p)
AM(e1 e2 △ (nM,nR)) = mapnM AM(e1) (repnR AM(e2))

...

Elaboration
Reminder: a satisfying substitution s for a constraint set C (which
Solve gives us) instantiates all rank variables with integral ranks:

s(sqrt [1,2,3]△ (M,R)) −→ sqrt [1,2,3]△ (1,0)

How do we then transform such an expression into one with explicit
maps and reps?

sqrt [1,2,3]△ (1,0) −→ map sqrt [1,2,3]

The AM transformation converts from the internal language to the
target language:

AM([e1, . . . ,em]) = [AM(e1), . . . ,AM(em)]
AM(def f x = e ; p) = def f x = AM(e) ; AM(p)
AM(e1 e2 △ (nM,nR)) = mapnM AM(e1) (repnR AM(e2))

...

Elaboration
Reminder: a satisfying substitution s for a constraint set C (which
Solve gives us) instantiates all rank variables with integral ranks:

s(sqrt [1,2,3]△ (M,R)) −→ sqrt [1,2,3]△ (1,0)

How do we then transform such an expression into one with explicit
maps and reps?

sqrt [1,2,3]△ (1,0) −→ map sqrt [1,2,3]

The AM transformation converts from the internal language to the
target language:

AM([e1, . . . ,em]) = [AM(e1), . . . ,AM(em)]
AM(def f x = e ; p) = def f x = AM(e) ; AM(p)
AM(e1 e2 △ (nM,nR)) = mapnM AM(e1) (repnR AM(e2))

...

AM Properties

The AM transformation preserves well-typedness of programs.

Proposition: Well-typedness

If Γ ⊢ e :S σ ∥ C and s is a satisfier of C, then s(Γ) ⊢ AM(s(e)) : s(S σ).

Proposition: Well-typedness

If Γ ⊢ p : σ then Γ ⊢ AM(p) : σ.

AM Properties

The AM transformation preserves well-typedness of programs.

Proposition: Well-typedness

If Γ ⊢ e :S σ ∥ C and s is a satisfier of C, then s(Γ) ⊢ AM(s(e)) : s(S σ).

Proposition: Well-typedness

If Γ ⊢ p : σ then Γ ⊢ AM(p) : σ.

Consistency properties

Forward Consistency

If the programmer inserts an otherwise inferred map or rep operation
then the resulting program is unambiguous and its elaboration is
semantically equivalent to the elaboration of the original program.

Hindley-Milner AUTOMAP
Γ ⊢ e: σ : σ Γ ⊢ map f x : σ Γ ⊢ f (rep x) : σ
↑ ↑ ↑

Γ ⊢ e : σ Γ ⊢ f x : σ Γ ⊢ f x : σ

Consistency properties

Forward Consistency

If the programmer inserts an otherwise inferred map or rep operation
then the resulting program is unambiguous and its elaboration is
semantically equivalent to the elaboration of the original program.

Hindley-Milner AUTOMAP
Γ ⊢ e: σ : σ Γ ⊢ map f x : σ Γ ⊢ f (rep x) : σ
↑ ↑ ↑

Γ ⊢ e : σ Γ ⊢ f x : σ Γ ⊢ f x : σ

Backwards Consistency

If the programmer removes an explicit map or rep operation then the
resulting program is either ambiguous or unambiguous and its
elaboration is semantically equivalent to the elaboration of the original
program.

Hindley-Milner AUTOMAP
Γ ⊢ e: σ : σ Γ ⊢ map f x : σ Γ ⊢ f (rep x) : σ

Γ ⊢ e : σ Γ ⊢ f x : σ Γ ⊢ f x : σ

Backwards Consistency

If the programmer removes an explicit map or rep operation then the
resulting program is either ambiguous or unambiguous and its
elaboration is semantically equivalent to the elaboration of the original
program.

Hindley-Milner AUTOMAP
Γ ⊢ e: σ : σ Γ ⊢ map f x : σ Γ ⊢ f (rep x) : σ
↓ ↓ ↓

Γ ⊢ e : σ Γ ⊢ f x : σ Γ ⊢ f x : σ

Backwards Consistency

If the programmer removes an explicit map or rep operation then the
resulting program is either ambiguous or unambiguous and its
elaboration is semantically equivalent to the elaboration of the original
program.

Hindley-Milner AUTOMAP
Γ ⊢ e: σ : σ Γ ⊢ map f x : σ Γ ⊢ f (rep x) : σ
↕ ↕ ↕

Γ ⊢ e : σ Γ ⊢ f x : σ Γ ⊢ f x : σ

Implementation

Implemented in the Futhark compiler.

Four phases:

Constraint gen. ILP solving Residual solving Elaboration

Aside from size inference, works very similarly to the Solve
algorithm, with a couple of exceptions.

Implementation

Implemented in the Futhark compiler.
Four phases:

Constraint gen. ILP solving Residual solving Elaboration

Aside from size inference, works very similarly to the Solve
algorithm, with a couple of exceptions.

Implementation

Implemented in the Futhark compiler.
Four phases:

Constraint gen. ILP solving Residual solving Elaboration

Aside from size inference, works very similarly to the Solve
algorithm, with a couple of exceptions.

Implementation - induced reps

map (λy. xs ∗ y) ys can be elaborated to

map (λy.map (∗) xs (rep y)) ys (1) or map (λy.map (∗) xs y) (rep ys) (2)

Both have size 2 and are minimal.
The rep in (1) is induced by the outermap. It will be eliminated by
rep fusion:

map (λy.map (∗) xs (rep y)) ys −→ map (λy.map (λx. x ∗ y) xs) ys

map (λy.map (λx. x ∗ y) xs) ys has size 1.
⇒we can disambiguate by only counting non-induced repS.

Implementation - induced reps

map (λy. xs ∗ y) ys can be elaborated to

map (λy.map (∗) xs (rep y)) ys (1) or map (λy.map (∗) xs y) (rep ys) (2)

Both have size 2 and are minimal.

The rep in (1) is induced by the outermap. It will be eliminated by
rep fusion:

map (λy.map (∗) xs (rep y)) ys −→ map (λy.map (λx. x ∗ y) xs) ys

map (λy.map (λx. x ∗ y) xs) ys has size 1.
⇒we can disambiguate by only counting non-induced repS.

Implementation - induced reps

map (λy. xs ∗ y) ys can be elaborated to

map (λy.map (∗) xs (rep y)) ys (1) or map (λy.map (∗) xs y) (rep ys) (2)

Both have size 2 and are minimal.
The rep in (1) is induced by the outermap. It will be eliminated by
rep fusion:

map (λy.map (∗) xs (rep y)) ys −→ map (λy.map (λx. x ∗ y) xs) ys

map (λy.map (λx. x ∗ y) xs) ys has size 1.
⇒we can disambiguate by only counting non-induced repS.

Implementation - induced reps

map (λy. xs ∗ y) ys can be elaborated to

map (λy.map (∗) xs (rep y)) ys (1) or map (λy.map (∗) xs y) (rep ys) (2)

Both have size 2 and are minimal.
The rep in (1) is induced by the outermap. It will be eliminated by
rep fusion:

map (λy.map (∗) xs (rep y)) ys −→ map (λy.map (λx. x ∗ y) xs) ys

map (λy.map (λx. x ∗ y) xs) ys has size 1.
⇒we can disambiguate by only counting non-induced repS.

Implementation - induced reps

Frames track the number of maps in an application (S = []MS1):

Γ ⊢ e1 e2 △ (M,R) :S σ ∥ C

The number of non-induced reps is found by subtracting the rank of
the frame:

non-induced reps = max(0, |R| − |S|)

ILP objective becomes

· · ·+M+max(0, |R| − |S|) + . . .

Implementation - induced reps

Frames track the number of maps in an application (S = []MS1):

Γ ⊢ e1 e2 △ (M,R) :S σ ∥ C

The number of non-induced reps is found by subtracting the rank of
the frame:

non-induced reps = max(0, |R| − |S|)

ILP objective becomes

· · ·+M+max(0, |R| − |S|) + . . .

Implementation - induced reps

Frames track the number of maps in an application (S = []MS1):

Γ ⊢ e1 e2 △ (M,R) :S σ ∥ C

The number of non-induced reps is found by subtracting the rank of
the frame:

non-induced reps = max(0, |R| − |S|)

ILP objective becomes

· · ·+M+max(0, |R| − |S|) + . . .

User experience

map and rep are normal Futhark functions.
▶ Programmer free to use Automap to whatever extent they wish.

Ambiguity feedback:
sum (length xss) can be elaborated to:
1. sum (rep (length xss))
2. sum (map length xss)

▶ Nice error messages.

▶ Disambiguation is easy: just insert a map or rep into the source.

Fully transparent: compiler can always elaborate any implicit maps or
reps.

User experience

map and rep are normal Futhark functions.
▶ Programmer free to use Automap to whatever extent they wish.

Ambiguity feedback:
sum (length xss) can be elaborated to:
1. sum (rep (length xss))
2. sum (map length xss)

▶ Nice error messages.

▶ Disambiguation is easy: just insert a map or rep into the source.

Fully transparent: compiler can always elaborate any implicit maps or
reps.

User experience

map and rep are normal Futhark functions.
▶ Programmer free to use Automap to whatever extent they wish.

Ambiguity feedback:
sum (length xss) can be elaborated to:
1. sum (rep (length xss))
2. sum (map length xss)

▶ Nice error messages.

▶ Disambiguation is easy: just insert a map or rep into the source.

Fully transparent: compiler can always elaborate any implicit maps or
reps.

User experience

map and rep are normal Futhark functions.
▶ Programmer free to use Automap to whatever extent they wish.

Ambiguity feedback:
sum (length xss) can be elaborated to:
1. sum (rep (length xss))
2. sum (map length xss)

▶ Nice error messages.

▶ Disambiguation is easy: just insert a map or rep into the source.

Fully transparent: compiler can always elaborate any implicit maps or
reps.

User experience

map and rep are normal Futhark functions.
▶ Programmer free to use Automap to whatever extent they wish.

Ambiguity feedback:
sum (length xss) can be elaborated to:
1. sum (rep (length xss))
2. sum (map length xss)

▶ Nice error messages.

▶ Disambiguation is easy: just insert a map or rep into the source.

Fully transparent: compiler can always elaborate any implicit maps or
reps.

Practical impact

Difficult to quantify value of feature that is glorified syntax sugar.

We (manually!) rewrote programs to take advantage of Automap
when we judged it improved readability.

Practical impact: before

def main [nK][nX]
(kx: [nK]f32) (ky: [nK]f32) (kz: [nK]f32)
(x: [nX]f32) (y: [nX]f32) (z: [nX]f32)
(phiR: [nK]f32) (phiI: [nK]f32)

: ([nX]f32, [nX]f32) =
let phiM = map (\r i -> r*r + i*i) phiR phiI
let as = map (\x_e y_e z_e ->

map (2*pi*)
(map (\kx_e ky_e kz_e ->

kx_e*x_e + ky_e*y_e + kz_e*z_e)
kx ky kz))

x y z
let qr = map (\a -> sum(map2 (*) phiM (map cos a))) as
let qi = map (\a -> sum(map2 (*) phiM (map sin a))) as
in (qr, qi)

Practical impact: after

def main [nK][nX]
(kx: [nK]f32) (ky: [nK]f32) (kz: [nK]f32)
(x: [nX]f32) (y: [nX]f32) (z: [nX]f32)
(phiR: [nK]f32) (phiI: [nK]f32)

: ([nX]f32, [nX]f32) =
let phiM = phiR*phiR + phiI*phiI
let as = 2*pi*(kx*transpose (rep x)

+ ky*transpose (rep y)
+ kz*transpose (rep z))

let qr = sum (cos as * phiM)
let qi = sum (sin as * phiM)
in (qr, qi)

Metrics from changing a benchmark suite

Proportion of ILP problems
that have less than some
given number of constraints.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 4 16 64 256 1024 4096 16384

Fr
a
ct

io
n

Size of ILP problem

Number of programs: 67
Lines of code: 8621⇒ 8515
Change in maps: 467⇒ 213
Largest ILP size: 28104 constraints
Median ILP size: 16 constraints
Mean ILP size: 116 constraints
Mean type checking slowdown: 2.50×

Related work

Typed Remora:
▶ Very general/powerful; binds shape variables in types:

sum : ∀S.S int→ int

▶ Inference is very difficult.

Naperian Functors (Jeremy Gibbons):
▶ Cool rank polymorphism encoding in Haskell.
▶ Complicated function types (and potentially error messages).

Single-assignment C:
▶ Has rank specializationwhere functions have specialized definitions

depending on the rank of the input.
▶ No parametric polymorphism or higher-order functions.

Related work

Typed Remora:
▶ Very general/powerful; binds shape variables in types:

sum : ∀S.S int→ int

▶ Inference is very difficult.

Naperian Functors (Jeremy Gibbons):
▶ Cool rank polymorphism encoding in Haskell.
▶ Complicated function types (and potentially error messages).

Single-assignment C:
▶ Has rank specializationwhere functions have specialized definitions

depending on the rank of the input.
▶ No parametric polymorphism or higher-order functions.

Related work

Typed Remora:
▶ Very general/powerful; binds shape variables in types:

sum : ∀S.S int→ int

▶ Inference is very difficult.

Naperian Functors (Jeremy Gibbons):
▶ Cool rank polymorphism encoding in Haskell.
▶ Complicated function types (and potentially error messages).

Single-assignment C:
▶ Has rank specializationwhere functions have specialized definitions

depending on the rank of the input.
▶ No parametric polymorphism or higher-order functions.

Summary

Automap is a conservative extension of/compatible with a
Hindley-Milner type system for array programming.

Anything inferred can also be inserted explicitly (much like classic
type systems!)

Type checking based on some heavy machinery (ILP), but we
suspect of a fairly simple kind.

Implemented in Futhark, but not really production ready yet.
▶ Todo: quality of type errors, type checking speed, alternate ambiguity

checking.

Summary

Automap is a conservative extension of/compatible with a
Hindley-Milner type system for array programming.

Anything inferred can also be inserted explicitly (much like classic
type systems!)

Type checking based on some heavy machinery (ILP), but we
suspect of a fairly simple kind.

Implemented in Futhark, but not really production ready yet.
▶ Todo: quality of type errors, type checking speed, alternate ambiguity

checking.

Summary

Automap is a conservative extension of/compatible with a
Hindley-Milner type system for array programming.

Anything inferred can also be inserted explicitly (much like classic
type systems!)

Type checking based on some heavy machinery (ILP), but we
suspect of a fairly simple kind.

Implemented in Futhark, but not really production ready yet.
▶ Todo: quality of type errors, type checking speed, alternate ambiguity

checking.

Summary

Automap is a conservative extension of/compatible with a
Hindley-Milner type system for array programming.

Anything inferred can also be inserted explicitly (much like classic
type systems!)

Type checking based on some heavy machinery (ILP), but we
suspect of a fairly simple kind.

Implemented in Futhark, but not really production ready yet.
▶ Todo: quality of type errors, type checking speed, alternate ambiguity

checking.

Check out Futhark: https://futhark-lang.org
▶ There’s a blog post on Automap that covers much of this talk in more

detail.

▶ An Automap paper will be published at OOPSLA 2024, preprint
available at https://rschenck.com.

https://futhark-lang.org
https://rschenck.com

